Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37233583

ABSTRACT

The polymer electrolyte membrane and its contact with electrodes has a significant effect on the performance of fuel and electrolysis cells but the choice of commercially available membranes is limited. In this study, membranes for direct methanol fuel cells (DMFCs) were made by ultrasonic spray deposition from commercial Nafion solution; the effect of the drying temperature and presence of high boiling solvents on the membrane properties was then analyzed. When choosing suitable conditions, membranes with similar conductivity, water uptake, and higher crystallinity than comparable commercial membranes can be obtained. These show similar or superior performance in DMFC operation compared to commercial Nafion 115. Furthermore, they exhibit low permeability for hydrogen, which makes them attractive for electrolysis or hydrogen fuel cells. The findings from our work will allow for the adjustment of membrane properties to the specific requirements of fuel cells or water electrolysis, as well as the inclusion of additional functional components for composite membranes.

2.
Membranes (Basel) ; 13(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36837623

ABSTRACT

In this study, we aim to adapt a solid oxide cell (SOC) to a membrane reactor for general chemical reactions to leverage the readily available multichannel design of the SOC. As a proof-of-concept, the developed reactor is tested for syngas production by the partial oxidation of methane using oxygen ion transport membranes (ITMs) to achieve oxygen separation and permeation. A La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) membrane and Ni/MgAl2O4 catalyst are used for oxygen permeation and the partial oxidation of methane, respectively. ANSYS Fluent is used to assess the reactor performance with the help of computational fluid dynamics (CFD) simulations. The membrane permeation process is chemical kinetics achieved by user-defined functions (UDFs). The simulation results show that the oxygen permeation rate depends on the temperature, air, and fuel flow rates, as well as the occurrence of reactions, which is consistent with the results reported in the literature. During isothermal operation, the product composition and the species distribution in the reactor change with the methane flow rate. When the molar ratio of fed methane to permeated oxygen is 2.0, the methane conversion and CO selectivity reach a high level, namely 95.8% and 97.2%, respectively, which agrees well with the experimental data reported in the literature. Compared to the isothermal operation, the methane conversion of the adiabatic operation is close to 100%. Still, the CO selectivity only reaches 61.6% due to the hot spot formation of 1491 K in the reactor. To reduce the temperature rise in the adiabatic operation, reducing the methane flow rate is an approach, but the price is that the productivity of syngas is sacrificed as well. In conclusion, the adaption of the SOC to a membrane reactor is achieved, and other reaction applications can be explored in the same way.

3.
ACS Appl Mater Interfaces ; 13(11): 13576-13585, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33706507

ABSTRACT

Low-cost, highly active, and highly stable catalysts are desired for the generation of hydrogen and oxygen using water electrolyzers. To enhance the kinetics of the oxygen evolution reaction in an acidic medium, it is of paramount importance to redesign iridium electrocatalysts into novel structures with organized morphology and high surface area. Here, we report on the designing of a well-defined and highly active hollow nanoframe based on iridium. The synthesis strategy was to control the shape of nickel nanostructures on which iridium nanoparticles will grow. After the growth of iridium on the surface, the next step was to etch the nickel core to form the NiIr hollow nanoframe. The etching procedure was found to be significant in controlling the hydroxide species on the iridium surface and by that affecting the performance. The catalytic performance of the NiIr hollow nanoframe was studied for oxygen evolution reaction and shows 29 times increased iridium mass activity compared to commercially available iridium-based catalysts. Our study provides novel insights to control the fabrication of iridium-shaped catalysts using 3d transition metal as a template and via a facile etching step to steer the formation of hydroxide species on the surface. These findings shall aid the community to finally create stable iridium alloys for polymer electrolyte membrane water electrolyzers, and the strategy is also useful for many other electrochemical devices such as batteries, fuel cells, sensors, and solar organic cells.

4.
Environ Int ; 152: 106474, 2021 07.
Article in English | MEDLINE | ID: mdl-33711760

ABSTRACT

The reduction of greenhouse gas emissions is one of the greatest global challenges through 2050. Besides greenhouse gas emissions, air pollution, such as nitrogen oxide and particulate matter emissions, has gained increasing attention in agglomerated areas with transport vehicles being one of the main sources thereof. Alternative fuels that fulfill the greenhouse gas reduction goals also offer the possibility of solving the challenge of rising urban pollution. This work focuses on the electric drive option for heavy and light duty vehicle freight transport. In this study, fuel cell-electric vehicles, battery-electric vehicles and overhead catenary line trucks were investigated, taking a closer look at their potential to reduce greenhouse gas emissions and air pollution and also considering the investment and operating costs of the required infrastructure. This work was conducted using a bottom-up transport model for the federal state of North Rhine-Westphalia in Germany. Two scenarios for reducing these emissions were analyzed at a spatial level. In the first of these, selected federal highways with the highest traffic volume were equipped with overhead catenary lines for the operation of diesel-hybrid overhead trucks on them. For the second spatial scenario, the representative urban area of the city of Cologne was investigated in terms of air pollution, shifting articulated trucks to diesel-hybrid overhead trucks and rigid trucks, trailer trucks and light duty vehicles to battery-electric or fuel cell-electric drives. For the economic analysis, the building up of a hydrogen infrastructure in the cases of articulated trucks and all heavy duty vehicles were also taken into account. The results showed that diesel-hybrid overhead trucks are only a cost-efficient solution for highways with high traffic volume, whereas battery overhead trucks have a high uncertainty in terms of costs and technical feasibility. In general, the broad range of costs for battery overhead trucks makes them competitive with fuel cell-electric trucks. Articulated trucks have the highest potential to be operated as overhead trucks. However, the results indicated that air pollution is only partially reduced by switching conventional articulated trucks to electric drive models. The overall results show that a comprehensive approach such as fuel cell-electric drives for all trucks would most likely be more beneficial.


Subject(s)
Air Pollutants , Air Pollution , Greenhouse Gases , Air Pollutants/analysis , Air Pollution/prevention & control , Germany , Motor Vehicles , Vehicle Emissions/analysis
5.
Sci Total Environ ; 727: 138583, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32330716

ABSTRACT

Harmful emissions like nitrogen oxide and particulate matter are one of the big challenges facing modern society. These emissions are especially apparent in agglomerations. Possible solutions to overcome this challenge within the framework of the transformation of the transport sector are the change of the transport vehicles of freight and passenger transport or changing the fuel of the vehicles. Determining the viability of both approaches requires analyses to determine which vehicles are the main polluters in urban areas. This study outlines a bottom-up approach for the calculation of road transport emissions on street level in the representative model region of North Rhine-Westphalia in Germany, considering eight different vehicle classes as well as diesel and gasoline as fuel. Part of the approach is the development of a street-section traffic volume map considering all streets in the model region using a developed multivariate linear regression model for Germany and existing traffic counts. Using the approach developed here, the urban areas of Herne, Oberhausen and Bochum were identified as hotspots with the highest specific nitrogen oxide emissions, while the urban areas of Herne, Oberhausen and Gelsenkirchen were identified as hotspots with the highest specific particulate matter emissions. A detailed investigation of Oberhausen as a representative emission hotspot showed that 91% of road transport nitrogen oxide emissions are produced by vehicles that use diesel fuel and 9% from vehicles with gasoline fuel, while gasoline vehicles account for 43% of the total distance driven and diesel vehicles for 57%. With respect to particulate matter emissions in the urban area of Oberhausen, 29% are produced by gasoline vehicles and 71% by diesel vehicles. However, only 22% of particulate matter emissions are exhaust emissions, while 78% are produced due to the abrasion of tires, brakes and the road.

6.
Phys Chem Chem Phys ; 19(39): 26596-26605, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28948987

ABSTRACT

The Li+ ion transfer between a solid and a liquid Li+ electrolyte has been investigated by DC polarisation techniques. The current density i is measured as a function of the electrochemical potential drop Δ[small mu, Greek, tilde]Li+ at the interface, using a liquid electrolyte with different Li+ concentrations. The subject of this experimental study is the interface between the solid electrolyte Ta-substituted lithium lanthanum zirconate (Li6.6La3Zr1.6Ta0.4O12) and a liquid electrolyte consisting of LiPF6 dissolved in ethylene carbonate/dimethyl carbonate (1 : 1). The functional course of i vs. Δ[small mu, Greek, tilde]Li+ can be described by a serial connection between a constant ohmic resistance Rslei and a current dependent thermally activated ion transfer process. For the present solid-liquid electrolyte interface the areal resistance Rslei of the surface layer is independent of the Li+ concentration in the liquid electrolyte. At room temperature a value of about 300 Ω cm2 is found. The constant ohmic resistance Rslei can be attributed to a surface layer on the solid electrolyte with a (relatively) low conductivity (solid-liquid electrolyte interphase). The low conducting surface layer is formed by degradation reactions with the liquid electrolyte. Rslei is considerably increased if a small amount (ppm) of water is added to the liquid electrolyte. The thermally activated ionic transfer process obeys a Butler-Volmer like behaviour, resulting in an exchange current density i0 depending on the Li+ concentration in the liquid electrolyte by a power-law. At a Li+ concentration of 1 mol l-1 a value of 53.1 µA cm-2 is found. A charge transfer coefficient α of ∼0.44 is measured. The finding of a superposed constant ohmic resistance due to a solid-liquid electrolyte interphase and a current dependent thermally activated ion transfer process is confirmed by the results of two former experimental studies from the literature, performing AC measurements/EIS.

7.
ACS Appl Mater Interfaces ; 7(29): 15746-51, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26154401

ABSTRACT

The electrodes in fuel cells simultaneously realize electric and ionic conductivity. In the case of acidic polymer electrolytes, the electrodes are typically made of composites of carbon-supported catalyst and Nafion polymer electrolyte binder. In this study, the interaction of the proton conduction, the electron conduction, and the electrochemical hydrogen conversion in such composite electrode materials was examined. Exposed to a hydrogen atmosphere, these composites displayed up to 10-fold smaller resistivities for the proton conduction than that of Nafion membranes. This effect was ascribed to the simultaneously occurring electrochemical hydrogen oxidation and evolution inside the composite samples, which are driven by different proton and electron resistivities. The parasitic electrochemical currents resulting were postulated to occur in the anode of fuel cells with polymer, solid oxide, or liquid alkaline electrolytes, when the ohmic drop of the ion conduction in the anode is higher with the anodic kinetic overvoltage (as illustrated in the graphical abstract). In this case, the parasitic electrochemical currents increase the anodic kinetic overpotential and the ohmic drop in the anode. Thinner fuel cell anodes with smaller ohmic drops for the ion conduction may reduce the parasitic electrochemical currents.

8.
Phys Chem Chem Phys ; 14(28): 10022-6, 2012 Jul 28.
Article in English | MEDLINE | ID: mdl-22699788

ABSTRACT

Poly(2,5-benzimidazole) (AB-PBI) membranes are investigated by studying the FT-Raman signals due to the benzimidazole ring vibration together with the C-C and C-H out-of- and in-plane ring deformations. By immersion in aqueous ortho-phosphoric acid for different time periods, membranes with various doping degrees, i.e. different molar fractions of acid, are prepared. The chemical-physical interactions between polymer and acid are studied through band shifting and intensity change of diagnostic peaks in the 500-2000 cm(-1) spectral range. The formation of hydrogen bonding networks surrounding the polymer seems to be the main reason for the observed interactions. Only if the AB-PBI polymer is highly doped, the Raman spectra show an additional signal, which can be attributed to the presence of free phosphoric acid molecules in the polymer network. For low and intermediate doping degrees no evidence for free phosphoric acid molecules can be seen in the spectra. The extent of the polymer-phosphoric acid interactions in the doped membrane material is reinvestigated after a period of one month and the stability discussed. Our results provide insight into the role of phosphoric acid as a medium in the conductivity mechanism in polybenzimidazole.


Subject(s)
Benzimidazoles/chemistry , Electric Power Supplies , Membranes, Artificial , Phosphoric Acids/chemistry , Polymers/chemistry , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...