Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 174(22): 4123-4139, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28806488

ABSTRACT

BACKGROUND AND PURPOSE: Valvular heart disease (VHD) is highly prevalent in industrialized countries. Chronic use of anorexigens, amphetamine or ergot derivatives targeting the 5-HT system is associated with VHD. Here, we investigated the contribution of 5-HT receptors in a model of valve degeneration induced by nordexfenfluramine, the main metabolite of the anorexigens, dexfenfluramine and benfluorex. EXPERIMENTAL APPROACH: Nordexfenfluramine was infused chronically (28 days) in mice ((WT and transgenic Htr2B -/- , Htr2A -/- , and Htr2B/2A -/- ) to induce mitral valve lesions. Bone marrow transplantation was also carried out. Haemodynamics were measured with echocardiography; tissues and cells were analysed by histology, immunocytochemistry, flow cytometry and RT -qPCR. Samples of human prolapsed mitral valves were also analysed. KEY RESULTS: Chronic treatment of mice with nordexfenfluramine activated 5-HT2B receptors and increased valve thickness and cell density in a thick extracellular matrix, mimicking early steps of mitral valve remodelling. Lesions were prevented by 5-HT2A or 5-HT2B receptor antagonists and in transgenic Htr2B -/- or Htr2A/2B -/- mice. Surprisingly, valve lesions were mainly formed by numerous non-proliferative CD34+ endothelial progenitors. These progenitors originated from bone marrow (BM) as revealed by BM transplantation. The initial steps of mitral valve remodelling involved mobilization of BM-derived CD34+ CD31+ cells by 5-HT2B receptor stimulation. Analysis of human prolapsed mitral valves showing spontaneous degenerative lesions, demonstrated the presence of non-proliferating CD34+ /CD309+ /NOS3+ endothelial progenitors expressing 5-HT2B receptors. CONCLUSIONS AND IMPLICATIONS: BM-derived endothelial progenitor cells make a crucial contribution to the remodelling of mitral valve tissue. Our data describe a new and important mechanism underlying human VHD.


Subject(s)
Endothelial Progenitor Cells , Heart Valve Diseases/metabolism , Mitral Valve/metabolism , Receptor, Serotonin, 5-HT2B/metabolism , Animals , Bone Marrow Transplantation , Endothelial Progenitor Cells/metabolism , Heart Valve Diseases/pathology , Male , Mice, Transgenic , Mitral Valve/drug effects , Mitral Valve/pathology , Norfenfluramine/pharmacology , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2B/genetics , Serotonin 5-HT2 Receptor Antagonists/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...