Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cold Spring Harb Perspect Med ; 2(2): a006916, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22355797

ABSTRACT

Control of HIV-1 gene expression depends on two viral regulatory proteins, Tat and Rev. Tat stimulates transcription elongation by directing the cellular transcriptional elongation factor P-TEFb to nascent RNA polymerases. Rev is required for the transport from the nucleus to the cytoplasm of the unspliced and incompletely spliced mRNAs that encode the structural proteins of the virus. Molecular studies of both proteins have revealed how they interact with the cellular machinery to control transcription from the viral LTR and regulate the levels of spliced and unspliced mRNAs. The regulatory feedback mechanisms driven by HIV-1 Tat and Rev ensure that HIV-1 transcription proceeds through distinct phases. In cells that are not fully activated, limiting levels of Tat and Rev act as potent blocks to premature virus production.


Subject(s)
Gene Expression/genetics , HIV Infections/virology , HIV-1/genetics , Transcription, Genetic/genetics , rev Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics , Feedback, Physiological/physiology , Genes, Suppressor/physiology , Humans , Polyadenylation/physiology , RNA Splicing/physiology , RNA, Viral/physiology , Transcription Factors/physiology , Virus Activation/physiology , Virus Replication/physiology
2.
J Virol ; 84(24): 12790-800, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20926575

ABSTRACT

HIV-1 RNA undergoes a complex splicing process whereby over 40 different mRNA species are produced by alternative splicing. In addition, approximately half of the RNA transcripts remain unspliced and either are used to encode Gag and Gag-Pol proteins or are packaged into virions as genomic RNA. It has previously been shown that HIV-1 splicing is regulated by cis elements that bind to cellular factors. These factors either enhance or repress definition of exons that are flanked by the HIV-1 3' splice sites. Here we report that expression of modified U1 snRNPs with increased affinity to HIV-1 downstream 5' splice sites and to sequences within the first tat coding exon act to selectively increase splicing at the upstream 3' splice sites in cotransfected 293T cells. This results in a decrease of unspliced viral RNA levels and an approximately 10-fold decrease in virus production. In addition, excessive splicing of viral RNA is concomitant with a striking reduction in the relative amounts of Gag processing intermediates and products. We also show that T cell lines expressing modified U1 snRNAs exhibit reduced HIV-1 replication. Our results suggest that induction of excessive HIV-1 RNA splicing may be a novel strategy to inhibit virus replication in human patients.


Subject(s)
Alternative Splicing , HIV Infections/genetics , HIV-1/physiology , RNA, Small Nuclear/genetics , RNA, Viral/genetics , Virus Replication/physiology , gag Gene Products, Human Immunodeficiency Virus/genetics , Blotting, Northern , Blotting, Western , Cells, Cultured , Gene Expression Regulation, Viral , HIV Infections/virology , Humans , RNA Splice Sites/physiology , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/metabolism , T-Lymphocytes/virology
3.
Adv Virus Res ; 74: 1-40, 2009.
Article in English | MEDLINE | ID: mdl-19698894

ABSTRACT

Over 40 different human immunodeficiency virus type 1 (HIV-1) mRNA species, both completely and incompletely spliced, are produced by alternative splicing of the primary viral RNA transcript. In addition, about half of the viral RNA remains unspliced and is transported to the cytoplasm where it is used both as mRNA and as genomic RNA. In general, the identities of the completely and incompletely spliced HIV-1 mRNA species are determined by the proximity of the open reading frames to the 5'-end of the mRNAs. The relative abundance of the mRNAs encoding the HIV-1 gene products is determined by the frequency of splicing at the different alternative 3'-splice sites. This chapter will highlight studies showing how HIV-1 uses exon definition to control the level of splicing at each of its 3'-splice sites through a combination of positively acting exonic splicing enhancer (ESE) elements, negatively acting exonic and intronic splicing silencer elements (ESS and ISS elements, respectively), and the 5'-splice sites of the regulated exons. Each of these splicing elements represent binding sites for cellular factors whose levels in the infected cell can determine the dominance of the positive or negative elements on HIV-1 alternative splicing. Both mutations of HIV-1 splicing elements and overexpression or inhibition of cellular splicing factors that bind to these elements have been used to show that disruption of regulated splicing inhibits HIV-1 replication. These studies have provided strong rationale for the investigation and development of antiviral drugs that specifically inhibit HIV-1 RNA splicing.


Subject(s)
Alternative Splicing , Gene Expression Regulation, Viral , HIV-1/physiology , RNA, Messenger , RNA, Viral , Virus Replication , Base Sequence , Cell Line , Enhancer Elements, Genetic , HIV-1/genetics , HIV-1/metabolism , Humans , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism
4.
J Virol ; 83(12): 6067-78, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19357165

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) accessory protein Vif is encoded by an incompletely spliced mRNA resulting from splicing of the major splice donor in the HIV-1 genome, 5' splice site (5'ss) D1, to the first splice acceptor, 3'ss A1. We have shown previously that splicing of HIV-1 vif mRNA is tightly regulated by suboptimal 5'ss D2, which is 50 nucleotides downstream of 3'ss A1; a GGGG silencer motif proximal to 5'ss D2; and an SRp75-dependent exonic splicing enhancer (ESEVif). In agreement with the exon definition hypothesis, mutations within 5'ss D2 that are predicted to increase or decrease U1 snRNP binding affinity increase or decrease the usage of 3'ss A1 (D2-up and D2-down mutants, respectively). In this report, the importance of 5'ss D2 and ESEVif for avoiding restriction of HIV-1 by APOBEC3G (A3G) was determined by testing the infectivities of a panel of mutant viruses expressing different levels of Vif. The replication of D2-down and ESEVif mutants in permissive CEM-SS cells was not significantly different from that of wild-type HIV-1. Mutants that expressed Vif in 293T cells at levels greater than 10% of that of the wild type replicated similarly to the wild type in H9 cells, and Vif levels as low as 4% were affected only modestly in H9 cells. This is in contrast to Vif-deleted HIV-1, whose replication in H9 cells was completely inhibited. To test whether elevated levels of A3G inhibit replication of D2-down and ESEVif mutants relative to wild-type virus replication, a Tet-off Jurkat T-cell line that expressed approximately 15-fold-higher levels of A3G than control Tet-off cells was generated. Under these conditions, the fitness of all D2-down mutant viruses was reduced relative to that of wild-type HIV-1, and the extent of inhibition was correlated with the level of Vif expression. The replication of an ESEVif mutant was also inhibited only at higher levels of A3G. Thus, wild-type 5'ss D2 and ESEVif are required for production of sufficient Vif to allow efficient HIV-1 replication in cells expressing relatively high levels of A3G.


Subject(s)
Cytidine Deaminase/metabolism , RNA Splice Sites , RNA Splicing , RNA, Viral/genetics , vif Gene Products, Human Immunodeficiency Virus/metabolism , APOBEC-3G Deaminase , Cell Line , Gene Expression Regulation, Viral , HIV-1/genetics , HIV-1/physiology , Humans , Mutation , Virus Replication
5.
Retrovirology ; 5: 18, 2008 Feb 04.
Article in English | MEDLINE | ID: mdl-18241354

ABSTRACT

BACKGROUND: Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1) differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2) control of HIV-1 alternative splicing, which is essential for optimal viral replication. RESULTS: Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins) and inhibitory factors (members of the hnRNP family). While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. CONCLUSION: While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative viral pre-mRNA splicing were observed. These changes correlated with changes in Tat expression and virus production and could play an important role in viral persistence in macrophages. This mechanism could provide a novel target for control of infection in this critical cell type, which would be necessary for eventual eradication of the virus from infected individuals.


Subject(s)
Alternative Splicing , Gene Expression Regulation, Viral , HIV Infections/virology , HIV-1/physiology , Cells, Cultured , Genes, tat/genetics , Humans , Macrophages/virology , Phosphoproteins/metabolism , RNA, Messenger/metabolism , RNA, Viral/metabolism , Ribonucleoproteins/metabolism , Virus Replication
6.
J Virol ; 82(3): 1600-4, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18032510

ABSTRACT

We have previously described several human immunodeficiency virus type 1 (HIV-1) mutants that are characterized by an excessive-RNA-splicing phenotype and reduced virus particle production. In one of these mutants (NLD2up), the sequence of 5' splice site D2 was changed to a consensus splice donor site. This splice site overlaps the HIV-1 integrase reading frame, and thus, the NLD2up mutant also bears a G-to-W change at amino acid 247 of the integrase. A previously described E-to-K mutant at position 246 of the C-terminal domain of the integrase, which resulted in a G-to-A mutation at the +3 position of overlapping splice donor D2 (NLD2A3), was also shown to affect virus particle production and Gag protein processing. By using second-site mutations to revert the excessive-splicing phenotype, we show that the effects on Gag protein processing and virus particle production of both the NLD2up and NLD2A3 mutants are caused by excessive viral RNA splicing due to the activation of the overlapping 5' splice site and not to the changes in the integrase protein. Both integrase protein mutations, however, are lethal for virus infectivity. These studies suggest that changes in the usage of overlapping splice sites may be a possible alternative explanation for a defective virus phenotype resulting from changes in protein-coding sequences or in the nucleotide sequence during codon optimization.


Subject(s)
Alternative Splicing , Amino Acid Substitution , HIV Integrase/metabolism , HIV-1/genetics , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/metabolism , HIV Integrase/genetics , HIV-1/metabolism , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics
7.
Curr HIV Res ; 4(1): 43-55, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16454710

ABSTRACT

In HIV-1 infected cells, over 40 different mRNA species are produced by alternative splicing of the single HIV-1 primary RNA transcript. In addition, approximately half of the HIV-1 primary RNA transcripts are not spliced and are exported to the cytoplasm where they serve as mRNA and as genomic RNA. In this article, we will review current knowledge of the mechanisms by which the HIV-1 alternative splicing is regulated. Several negatively and positively-acting cis-acting elements have been detected within the viral genome that repress or facilitate viral RNA splicing by binding to cellular proteins. These include exonic splicing silencers (ESS) and an intronic splicing silencer (ISS) that are selectively bound either by members of the hnRNP A/B family (hnRNPs A1, A1(B), A2, and B1) or by hnRNP H. Exonic splicing enhancers (ESE) are also present within the HIV-1 genome and are selectively bound by members of the SR protein family. ESS and ISS repression mediated by hnRNP A/B proteins occurs at early steps of splicing, prior to formation of pre-spliceosome complexes. Current models propose that ESS elements promote cooperative binding of hnRNP A/B proteins to the exon and prevent efficient binding of essential cellular splicing factors to the 3' splice site. SR proteins bound to ESE elements that are juxtaposed or overlapping ESS elements may counteract this inhibition. We will review data indicating the importance of the HIV-1 splicing elements and their cognate binding proteins for efficient virus replication. Differences in cis-acting splicing elements between the group M (major) and group O (outlier) HIV-1 strains will also be discussed. Finally we will review evidence suggesting the possibility that there may be changes in regulation of HIV-1 alternative splicing in infected human T cells, human macrophages and rodent cells.


Subject(s)
Alternative Splicing , Enhancer Elements, Genetic , Gene Expression Regulation, Viral , HIV-1/genetics , RNA Splicing , RNA-Binding Proteins/metabolism , Animals , Cell Line , Exons , HIV-1/metabolism , HIV-1/pathogenicity , HIV-1/physiology , Humans , RNA, Viral/genetics , RNA, Viral/metabolism
8.
Retrovirology ; 3: 10, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16457729

ABSTRACT

BACKGROUND: Inefficient alternative splicing of the human immunodeficiency virus type 1(HIV-1) primary RNA transcript results in greater than half of all viral mRNA remaining unspliced. Regulation of HIV-1 alternative splicing occurs through the presence of suboptimal viral 5' and 3' splice sites (5' and 3'ss), which are positively regulated by exonic splicing enhancers (ESE) and negatively regulated by exonic splicing silencers (ESS) and intronic splicing silencers (ISS). We previously showed that splicing at HIV-1 3'ss A2 is repressed by ESSV and enhanced by the downstream 5'ss D3 signal. Disruption of ESSV results in increased vpr mRNA accumulation and exon 3 inclusion, decreased accumulation of unspliced viral mRNA, and decreased virus production. RESULTS: Here we show that optimization of the 5'ss D2 signal results in increased splicing at the upstream 3'ss A1, increased inclusion of exon 2 into viral mRNA, decreased accumulation of unspliced viral mRNA, and decreased virus production. Virus production from the 5'ss D2 and ESSV mutants was rescued by transient expression of HIV-1 Gag and Pol. We further show that the increased inclusion of either exon 2 or 3 does not significantly affect the stability of viral mRNA but does result in an increase and decrease, respectively, in HIV-1 mRNA levels. The changes in viral mRNA levels directly correlate with changes in tat mRNA levels observed upon increased inclusion of exon 2 or 3. CONCLUSION: These results demonstrate that splicing at HIV-1 3'ss A1 is regulated by the strength of the downstream 5'ss signal and that suboptimal splicing at 3'ss A1 is necessary for virus replication. Furthermore, the replication defective phenotype resulting from increased splicing at 3'ss A1 is similar to the phenotype observed upon increased splicing at 3'ss A2. Further examination of the role of 5'ss D2 and D3 in the alternative splicing of 3'ss A1 and A2, respectively, is necessary to delineate a role for non-coding exon inclusion in HIV-1 replication.


Subject(s)
Alternative Splicing , HIV-1/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Virus Replication , Base Sequence , Cell Line , DNA Primers , Enhancer Elements, Genetic , Exons , Gene Products, vif/immunology , Gene Products, vpr/immunology , HIV-1/physiology , HeLa Cells , Humans , Molecular Sequence Data , Oligonucleotides, Antisense , Plasmids , vif Gene Products, Human Immunodeficiency Virus , vpr Gene Products, Human Immunodeficiency Virus
9.
J Virol ; 79(16): 10478-86, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16051840

ABSTRACT

Alternative splicing of the human immunodeficiency virus type 1 (HIV-1) genomic mRNA produces more than 40 unique viral mRNA species, of which more than half remain incompletely spliced within an HIV-1-infected cell. Regulation of splicing at HIV-1 3' splice sites (3'ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation of splicing occurs through binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3'ss A2, which produces vpr mRNA and promotes inclusion of HIV-1 exon 3, is repressed by the hnRNP A/B-dependent exonic splicing silencer ESSV. Here we show that ESSV activity downstream of 3'ss A2 is localized to a 16-nucleotide element within HIV-1 exon 3. HIV-1 replication was reduced by 95% when ESSV was inactivated by mutagenesis. Reduced replication was concomitant with increased inclusion of exon 3 within spliced viral mRNA and decreased accumulation of unspliced viral mRNA, resulting in decreased cell-associated p55 Gag. Prolonged culture of ESSV mutant viruses resulted in two independent second-site reversions disrupting the splice sites that define exon 3, 3'ss A2 and 5' splice site D3. Either of these changes restored both HIV-1 replication and regulated viral splicing. Therefore, inhibition of HIV-1 3'ss A2 splicing is necessary for HIV-1 replication.


Subject(s)
Exons , HIV-1/genetics , HIV-1/physiology , Silencer Elements, Transcriptional , Virus Replication , Base Sequence , Cell Line , Humans , Molecular Sequence Data , RNA Splicing
10.
Mol Cell Biol ; 23(23): 8762-72, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14612416

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) exonic splicing silencers (ESSs) inhibit production of certain spliced viral RNAs by repressing alternative splicing of the viral precursor RNA. Several HIV-1 ESSs interfere with spliceosome assembly by binding cellular hnRNP A/B proteins. Here, we have further characterized the mechanism of splicing repression using a representative HIV-1 hnRNP A/B-dependent ESS, ESSV, which regulates splicing at the vpr 3' splice site. We show that hnRNP A/B proteins bound to ESSV are necessary to inhibit E complex assembly by competing with the binding of U2AF65 to the polypyrimidine tracts of repressed 3' splice sites. We further show evidence suggesting that U1 snRNP binds the 5' splice site despite an almost complete block of splicing by ESSV. Possible splicing-independent functions of U1 snRNP-5' splice site interactions during virus replication are discussed.


Subject(s)
HIV-1/genetics , HIV-1/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Nuclear Proteins , RNA, Viral/metabolism , Retroviridae Proteins/metabolism , Ribonucleoproteins/metabolism , Base Sequence , Exons , Gene Silencing , Humans , In Vitro Techniques , Models, Biological , Protein Binding , RNA Splicing , RNA, Small Nuclear/metabolism , RNA, Viral/genetics , Spliceosomes/metabolism , Splicing Factor U2AF
SELECTION OF CITATIONS
SEARCH DETAIL
...