Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
BMC Musculoskelet Disord ; 24(1): 786, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794344

ABSTRACT

BACKGROUND: Lateral ankle sprains are highly prevalent and result in tissue damage, impairments of muscle strength, instability, and muscle activation. Up to 74% will experience ongoing symptoms after a lateral ankle sprain. In healthy subjects, motor imagery might induce neural changes in the somatosensory and motor areas of the brain, yielding favourable enhancements in muscular force. However, during motor imagery, difficulties in building a motor image, no somatosensory feedback, and the absence of structural changes at the level of the muscle might explain the differences found between motor imagery and physical practice. In rehabilitation, motor imagery might be supportive in rebuilding motor networks or creating new networks to restore impairments in muscle activation and movement patterns. This systematic review was undertaken to summarize the current body of evidence about the effect on motor imagery, or action observation, on lower leg strength, muscle performance, ankle range of motion, balance, and edema in persons with, and without, a lateral ankle sprain compared to usual care, a placebo intervention, or no intervention. METHODS: A systematic review with meta-analysis of randomized controlled trials was conducted in healthy participants and participants with a lateral ankle sprain. Motor imagery or action observation in isolation, or in combination with usual care were compared to a placebo intervention, or no intervention. An electronic search of MEDLINE, EMBASE, Cinahl, Psychinfo, Sportdiscus, Web of Science, Cochrane and Google Scholar was conducted, and articles published up to 7th June 2023 were included. Two reviewers individually screened titles and abstracts for relevancy using the inclusion criteria. Variables related to muscle strength, muscle function, range of motion, balance, return to sports tests, or questionnaires on self-reported function or activities were extracted. A risk of bias assessment was done using the Cochrane Risk-of-Bias tool II by two reviewers. Meta-analysis using a random effects model was performed when two or more studies reported the same outcome measures. The Standardized Mean Difference (SMD) was calculated over the change from baseline scores. Review manager 5.4 was used to perform analysis of subgroup differences and test for statistically significant differences. Confidence intervals were visually checked for overlap between subgroups. RESULTS: Nine studies, six examining healthy participants and three examining participants with an acute lateral ankle sprain, were included. All studies were rated with moderate to high risk of bias overall. Quality of the motor imagery interventions differed largely between studies. Meta-analysis showed a large and significant effect of motor imagery on lower leg strength (SMD 1.47, 95% CI 0.44 to 2.50); however, the evidence was downgraded to very low certainty due to substantial heterogeneity (I2 = 73%), limitations in the studies (some concerns in risk of bias in all studies), and imprecision (n = < 300). Evidence showed no association with ankle range of motion (SMD 0.25, 95% CI -0.43 to 0.93), edema (SMD -1.11, 95% CI -1.60 to 3.81), the anterior reach direction of the Star Excursion Balance Test (SEBT) (SMD 0.73, 95% CI -0.62 to 2.08), the posterolateral direction (SMD 0.32, 95% CI -0.94 to 1.57), and the posteromedial direction (SMD 0.52, 95% CI -0.07 to 1.10). The certainty of evidence for the different comparisons was very low. CONCLUSIONS: There is a low certainty, significant, positive effect for motor imagery being able to improve lower leg muscle strength in healthy participants. The effect on balance, range of motion and edema was uncertain and of very low certainty. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42021243258.


Subject(s)
Ankle Injuries , Ankle , Humans , Lower Extremity , Ankle Joint , Ankle Injuries/diagnosis , Ankle Injuries/therapy , Edema
2.
Foot Ankle Surg ; 26(7): 755-762, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31623963

ABSTRACT

INTRODUCTION: This study investigated the effect of operative claw toe correction with release of the metatarsophalangeal (MTP) joint, repositioning of the plantar fat pad and resection of the proximal interphalangeal joint on foot kinematics, plantar pressure distribution and Foot Function Index (FFI). METHODS: Prospective experimental study with pretest-posttest design. The plantar pressure, 3D foot kinematics and the FFI of 15 patients with symptomatic claw toes were measured three months before and 12months after surgery. Mean pressure, peak pressure and pressure time integral per sensor and various foot angles were calculated for the pre- and posttest and compared to a control group (N=15). RESULTS: Claw toe patients have increased pressure under the distal part of the metatarsal head and less pressure under the proximal part of the metatarsal heads compared to healthy controls. After surgery, there was a redistribution of pressure, resulting in a significant decrease of pressure under the distal part and an increase under the proximal part of the metatarsal head, providing a more equal plantar pressure distribution. Except for some small areas under the forefoot, heel and toes, there were no significant differences in pressure distribution between the operated feet and controls. Small, but significant differences between the pre- and postoperative condition were found for the lateral arch angle, calcaneus/malleolus supination and tibio-talar flexion. The score on the FFI improved statistically significant. DISCUSSION: These findings imply that the present operative procedure results in a more equal distribution of the plantar pressure under the forefoot and decrease of pain and offers successful treatment of metatarsalgia based on claw toe deformity.


Subject(s)
Hammer Toe Syndrome/surgery , Metatarsal Bones/surgery , Metatarsalgia/surgery , Orthopedic Procedures/methods , Range of Motion, Articular/physiology , Adult , Female , Foot , Hammer Toe Syndrome/complications , Hammer Toe Syndrome/diagnosis , Humans , Male , Metatarsalgia/diagnosis , Metatarsalgia/etiology , Metatarsophalangeal Joint/surgery , Middle Aged , Pressure , Prospective Studies
3.
J Inherit Metab Dis ; 41(4): 731-740, 2018 07.
Article in English | MEDLINE | ID: mdl-29532198

ABSTRACT

Mitochondrial disorders are multisystem conditions that can potentially affect gait in many ways. The aim of this study was to select the optimal protocol to quantify the spatiotemporal parameters of gait in ambulatory children with mitochondrial disorders based on feasibility, test-retest reliability, and the difference between patients and controls. Gait at self-selected pace was quantified in ambulatory children with a genetically confirmed primary mitochondrial disease using the GAITRite electronic walkway. Three protocols were tested: pre-exercise, post-exercise (after a 3-min walking test), and recovery. In 14 ambulatory patients, we showed good to perfect reliability for velocity, cadence, step length, step time, step time variability, and step width in the recovery condition. The difference between patients and 70 individually age- and gender matched healthy controls only became apparent in the post-exercise protocol. In conclusion, measuring spatiotemporal parameters of gait using the GAITRite in ambulatory children with mitochondrial disease is feasible and reliable for most of the parameters measured. When using gait analysis in future studies in children with mitochondrial disease, we advise i) to use an exercise test prior to the gait analysis, ii) to let children practice the test before the actual data collection, and iii) not to use symmetry parameters.


Subject(s)
Gait Analysis , Mitochondrial Diseases/genetics , Adolescent , Case-Control Studies , Child , Child, Preschool , DNA, Mitochondrial/genetics , Diagnosis, Computer-Assisted/instrumentation , Female , Humans , Male , Mitochondria/pathology , Mutation , Reproducibility of Results , Software , Walk Test
4.
PLoS One ; 8(2): e57209, 2013.
Article in English | MEDLINE | ID: mdl-23468936

ABSTRACT

In contrast to western countries, foot complaints are rare in Africa. This is remarkable, as many African adults walk many hours each day, often barefoot or with worn-out shoes. The reason why Africans can withstand such loading without developing foot complaints might be related to the way the foot is loaded. Therefore, static foot geometry and dynamic plantar pressure distribution of 77 adults from Malawi were compared to 77 adults from the Netherlands. None of the subjects had a history of foot complaints. The plantar pressure pattern as well as the Arch Index (AI) and the trajectory of the center of pressure during the stance phase were calculated and compared between both groups. Standardized pictures were taken from the feet to assess the height of the Medial Longitudinal Arch (MLA). We found that Malawian adults: (1) loaded the midfoot for a longer and the forefoot for a shorter period during roll off, (2) had significantly lower plantar pressures under the heel and a part of the forefoot, and (3) had a larger AI and a lower MLA compared to the Dutch. These findings demonstrate that differences in static foot geometry, foot loading, and roll off technique exist between the two groups. The advantage of the foot loading pattern as shown by the Malawian group is that the plantar pressure is distributed more equally over the foot. This might prevent foot complaints.


Subject(s)
Foot/physiology , Adult , Female , Foot/anatomy & histology , Humans , Malawi , Male , Middle Aged , Netherlands , Pressure , Walking , Young Adult
5.
J Am Podiatr Med Assoc ; 102(1): 18-24, 2012.
Article in English | MEDLINE | ID: mdl-22232317

ABSTRACT

BACKGROUND: Metatarsal pads are frequently prescribed for patients with metatarsalgia to reduce pain under the distal metatarsal heads. Several studies showed reduced pain and reduced plantar pressure just distal to the metatarsal pad. However, only part of the pain reduction could be explained by the decrease in plantar pressure under the forefoot. Therefore, an alternative hypothesis is proposed that pain relief is related to a widening of the foot and the creation of extra space between the metatarsal heads. This study focused on the effect of a metatarsal pad on the geometry of the forefoot by studying forefoot width and the height of the second metatarsal head. METHODS: Using a motion analysis system, 16 primary metatarsalgia feet and 12 control feet were measured when walking with and without a metatarsal pad. RESULTS: A significant mean increase of 0.60 mm in forefoot width during the stance phase was found when a metatarsal pad was worn. During midstance, the mean increase in forefoot width was 0.74 mm. In addition, walking with a metatarsal pad revealed an increase in the height of the second metatarsal head (mean, 0.62 mm). No differences were found between patients and controls. CONCLUSIONS: The combination of increased forefoot width and the height of the second metatarsal head produced by the metatarsal pad results in an increase in space between the metatarsal heads. This extra space could play a role in pain reduction produced by a metatarsal pad.


Subject(s)
Forefoot, Human/anatomy & histology , Gait/physiology , Metatarsal Bones/anatomy & histology , Metatarsalgia/therapy , Orthotic Devices , Pain Management/methods , Biomechanical Phenomena , Female , Humans , Male
6.
Foot Ankle Int ; 32(1): 57-65, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21288435

ABSTRACT

BACKGROUND: Although many patients with foot complaints receive customized insoles, the choice for an insole design can vary largely among foot experts. To investigate the variety of insole designs used in daily practice, the insole design and its effect on plantar pressure distribution were investigated in a large group of patients. MATERIALS AND METHODS: Mean, peak, and pressure-time-integral per sensor for 204 subjects with common foot complaints for walking with and without insoles was measured with the footscan® insole system (RSscan International). Each insole was scanned twice (precision3D), after which the insole height along the longitudinal and transversal cross section was calculated. Subjects were assigned to subgroups based on complaint and medial arch height. Data were analyzed for the total group and for the separate subgroups (forefoot or heel pain group and flat, normal or high medial arch group). RESULTS: The mean pressure significantly decreased under the metatarsal heads II-V and the calcaneus and significantly increased under the metatarsal bones and the lateral foot (p<0.0045) due to the insoles. However, similar redistribution patterns were found for the different foot complaints and arch heights. There was a slight difference in insole design between the subgroups; the heel cup was significantly higher and the midfoot support lower for the heel pain group compared to the forefoot pain group. The midfoot support was lowest in the flat arch group compared to the high and normal arch group (p<0.05). CONCLUSION: Although the insole shape was specific for the kind of foot complaint and arch height, the differences in shape were very small and the plantar pressure redistribution was similar for all groups. CLINICAL RELEVANCE: This study indicates that it might be sufficient to create basic insoles for particular patient groups.


Subject(s)
Foot/physiology , Orthotic Devices , Pressure , Shoes , Computer Simulation , Equipment Design , Foot/anatomy & histology , Humans , Middle Aged , Pain Measurement , Patient Satisfaction , Walking/physiology
7.
Med Sci Sports Exerc ; 42(12): 2264-72, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20404764

ABSTRACT

PURPOSE: The popularity of long-distance walking (LDW) has increased in the last decades. However, the effects of LDW on plantar pressure distribution and foot complaints, in particular, after several days of walking, have not been studied. METHODS: We obtained the plantar pressure data of 62 subjects who had no history of foot complaints and who walked a total distance of 199.8 km for men (n = 30) and 161.5 km for women (n = 32) during four consecutive days. Plantar pressure was measured each day after the finish (posttests I­IV) and compared with the baseline plantar pressure data, which was obtained 1 or 2 d before the march (pretest). Mean, peak, and pressure­time integral per pixel as well as the center of pressure (COP) trajectory of each foot per measurement day were calculated using the normalization method of Keijsers et al. A paired t-test with an adjusted P value was used to detect significant differences between pretest and posttest. RESULTS: Short-term adjustment to LDW resulted in a significant decreased loading on the toes accompanied with an increased loading on the metatarsal head III­V (P < 0.001). At all stages, particularly at later stages, there was significantly more heel loading (P < 0.001). Furthermore, the COP significantly displaced in the posterior direction but not in the mediolateral direction after marching. Contact time increased slightly from 638.5 +/- 24.2 to 675.4 +/- 22.5 ms (P < 0.001). CONCLUSIONS: The increased heel loading and decreased function of the toes found after marching indicate a change of walking pattern with less roll-off. It is argued that these changes reflect the effect of fatigue of the lower leg muscles and to avoid loading of the most vulnerable parts of the foot.


Subject(s)
Foot/physiology , Pressure , Walking , Adult , Biomechanical Phenomena , Female , Foot Injuries , Humans , Male , Middle Aged , Weight-Bearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...