Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 42(2): 203-206, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-28081076

ABSTRACT

We report a photothermal modulation of Mie scattering (PMMS) method that enables concurrent spatial and spectral discrimination of individual micron-sized particles. This approach provides a direct measurement of the "fingerprint" infrared absorption spectrum with the spatial resolution of visible light. Trace quantities (tens of picograms) of material were deposited onto an infrared-transparent substrate and simultaneously illuminated by a wavelength-tunable intensity-modulated quantum cascade pump laser and a continuous-wave 532 nm probe laser. Absorption of the pump laser by the particles results in direct modulation of the scatter field of the probe laser. The probe light scattered from the interrogated region is imaged onto a visible camera, enabling simultaneous probing of spatially-separated individual particles. By tuning the wavelength of the pump laser, the IR absorption spectrum is obtained. Using this approach, we measured the infrared absorption spectra of individual 3 µm PMMA and silica spheres. Experimental PMMS signal amplitudes agree with modeling using an extended version of the Mie scattering theory for particles on substrates, enabling the prediction of the PMMS signal magnitude based on the material and substrate properties.

2.
Nat Mater ; 9(8): 643-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20622864

ABSTRACT

Fibre materials span a broad range of applications ranging from simple textile yarns to complex modern fibre-optic communication systems. Throughout their history, a key premise has remained essentially unchanged: fibres are static devices, incapable of controllably changing their properties over a wide range of frequencies. A number of approaches to realizing time-dependent variations in fibres have emerged, including refractive index modulation, nonlinear optical mechanisms in silica glass fibres and electroactively modulated polymer fibres. These approaches have been limited primarily because of the inert nature of traditional glassy fibre materials. Here we report the composition of a phase internal to a composite fibre structure that is simultaneously crystalline and non-centrosymmetric. A ferroelectric polymer layer of 30 mum thickness is spatially confined and electrically contacted by internal viscous electrodes and encapsulated in an insulating polymer cladding hundreds of micrometres in diameter. The structure is thermally drawn in its entirety from a macroscopic preform, yielding tens of metres of piezoelectric fibre. The fibres show a piezoelectric response and acoustic transduction from kilohertz to megahertz frequencies. A single-fibre electrically driven device containing a high-quality-factor Fabry-Perot optical resonator and a piezoelectric transducer is fabricated and measured.

3.
Nano Lett ; 8(12): 4265-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19367844

ABSTRACT

We report a novel physical phenomenon in which a cylindrical shell undergoing a scaling process evolves into an ordered array of filaments upon reaching a characteristic thickness. We observe that the tendency to breakup is related to the material viscosity in a manner reminiscent of capillary instability. However, unlike the classical breakup of a fluid cylinder into droplets, the structural evolution in our system occurs exclusively in the cross sectional plane while uniformity is maintained in the axial direction. We propose a fluid front instability mechanism to account for the observed phenomena. The fleeting evolution of fluid breakup from a thin film to a filament array is captured in the frozen state by a thermal drawing process which results in extended lengths of solid sub-100 nm filaments encapsulated within a polymer fiber. Hundreds of glassy semiconductor filament arrays are precisely oriented within a polymer fiber matrix making electrical connections trivial. This approach offers unique opportunities for fabrication of nanometer scale devices of unprecedented lengths allowing simplified access and connectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...