Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727329

ABSTRACT

The rational design of composites based on graphene/metal oxides is one of the pillars for advancing their application in various practical fields, particularly gas sensing. In this study, a uniform distribution of ZnO nanoparticles (NPs) through the graphene layer was achieved, taking advantage of amine functionalization. The beneficial effect of amine groups on the arrangement of ZnO NPs and the efficiency of their immobilization was revealed by core-level spectroscopy, pointing out strong ionic bonding between the aminated graphene (AmG) and ZnO. The stability of the resulting Am-ZnO nanocomposite was confirmed by demonstrating that its morphology remains unchanged even after prolonged heating up to 350 °C, as observed by electron microscopy. On-chip multisensor arrays composed of both AmG and Am-ZnO were fabricated and thoroughly tested, showing almost tenfold enhancement of the chemiresistive response upon decorating the AmG layer with ZnO nanoparticles, due to the formation of p-n heterojunctions. Operating at room temperature, the fabricated multisensor chips exhibited high robustness and a detection limit of 3.6 ppm and 5.1 ppm for ammonia and ethanol, respectively. Precise identification of the studied analytes was achieved by employing the pattern recognition technique based on linear discriminant analysis to process the acquired multisensor response.

2.
Nanomaterials (Basel) ; 13(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299631

ABSTRACT

The facile synthesis of biografted 2D derivatives complemented by a nuanced understanding of their properties are keystones for advancements in biosensing technologies. Herein, we thoroughly examine the feasibility of aminated graphene as a platform for the covalent conjugation of monoclonal antibodies towards human IgG immunoglobulins. Applying core-level spectroscopy methods, namely X-ray photoelectron and absorption spectroscopies, we delve into the chemistry and its effect on the electronic structure of the aminated graphene prior to and after the immobilization of monoclonal antibodies. Furthermore, the alterations in the morphology of the graphene layers upon the applied derivatization protocols are assessed by electron microscopy techniques. Chemiresistive biosensors composed of the aerosol-deposited layers of the aminated graphene with the conjugated antibodies are fabricated and tested, demonstrating a selective response towards IgM immunoglobulins with a limit of detection as low as 10 pg/mL. Taken together, these findings advance and outline graphene derivatives' application in biosensing as well as hint at the features of the alterations of graphene morphology and physics upon its functionalization and further covalent grafting by biomolecules.

3.
ACS Appl Mater Interfaces ; 15(23): 28370-28386, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37253093

ABSTRACT

The artificial olfaction units (or e-noses) capable of room-temperature operation are highly demanded to meet the requests of society in numerous vital applications and developing Internet-of-Things. Derivatized 2D crystals are considered as sensing elements of choice in this regard, unlocking the potential of the advanced e-nose technologies limited by the current semiconductor technologies. Herein, we consider fabrication and gas-sensing properties of On-chip multisensor arrays based on a hole-matrixed carbonylated (C-ny) graphene film with a gradually changed thickness and concentration of ketone groups of up to 12.5 at.%. The enhanced chemiresistive response of C-ny graphene toward methanol and ethanol, of hundred ppm concentration when mixing with air to match permissible exposure OSHA limits, at room-temperature operation is signified. Following thorough characterization via core-level techniques and density functional theory, the predominant role of the C-ny graphene-perforated structure and abundance of ketone groups in advancing the chemiresistive effect is established. Advancing practice applications, selective discrimination of the studied alcohols is approached by linear discriminant analysis employing a multisensor array's vector signal, and the fabricated chip's long-term performance is shown.

4.
ACS Appl Mater Interfaces ; 15(4): 5628-5643, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36649132

ABSTRACT

In this paper, we suggest a previously unknown template-directed polymerization strategy for producing graphene/polymer aerogels with elevated mechanical properties, preservation of the nanoscale pore structure, an extraordinary crystallite structure, as well as tunable electrical and hydrophobic properties. The suggested approach is studied using the reduced graphene oxide (rGO)/ultrahigh molecular weight polyethylene (UHMWPE) system as an example. We also develop a novel method of ethylene polymerization with formation of UHMWPE directly on the surface of rGO sheets prestructured as the aerogel template. At a UHMWPE content smaller than 20 wt %, composite materials demonstrate completely reversible deformation and good conductivity. An ultrahigh polymer content (more than 80 wt %) results in materials with pronounced plasticity, improved hydrophobic properties, and a Young's modulus that is more than 200 times larger than that of pure rGO aerogel. Variation of the polymer content makes it possible to tune the electro-conductive properties of the aerogel in the range from 4.8 × 10-6 to 4.9 × 10-1 S/m and adjust its hydrophobic properties. The developed approach would make it possible to create composite materials with highly developed nanostructural morphology and advanced properties controlled by the thickness of the polymer layer on the surface of graphene sheets.

5.
Nanomaterials (Basel) ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615934

ABSTRACT

The derivatization of graphene to engineer its band structure is a subject of significant attention nowadays, extending the frames of graphene material applications in the fields of catalysis, sensing, and energy harvesting. Yet, the accurate identification of a certain group and its effect on graphene's electronic structure is an intricate question. Herein, we propose the advanced fingerprinting of the epoxide and hydroxyl groups on the graphene layers via core-level methods and reveal the modification of their valence band (VB) upon the introduction of these oxygen functionalities. The distinctive contribution of epoxide and hydroxyl groups to the C 1s X-ray photoelectron spectra was indicated experimentally, allowing the quantitative characterization of each group, not just their sum. The appearance of a set of localized states in graphene's VB related to the molecular orbitals of the introduced functionalities was signified both experimentally and theoretically. Applying the density functional theory calculations, the impact of the localized states corresponding to the molecular orbitals of the hydroxyl and epoxide groups was decomposed. Altogether, these findings unveiled the particular contribution of the epoxide and hydroxyl groups to the core-level spectra and band structure of graphene derivatives, advancing graphene functionalization as a tool to engineer its physical properties.

6.
Small ; 17(52): e2104316, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34704658

ABSTRACT

Engineering of the 2D materials' electronic structure is at the forefront of nanomaterials research nowadays, giving an advance in the development of next-generation photonic devices, e-sensing technologies, and smart materials. Herein, employing core-level spectroscopy methods combined with density functional theory (DFT) modeling, the modification of the graphenes' valence band (VB) upon its derivatization by carboxyls and ketones is revealed. The appearance of a set of localized states in the VB of graphene related to molecular orbitals of the introduced functionalities is signified both experimentally and theoretically. Applying the DFT calculations of the density of states projected on the functional groups, their contributions to the VB structure are decomposed. An empirical approach, allowing one to analyze and predict the impact of a certain functional group on the graphenes' electronic structure in terms of examination of the model molecules, mimicking the introduced functionality, is proposed and validated. The interpretation of the arising states origin is made and their designation, pointing out their symmetry type, is proposed. Taken together, these results guide the band structure engineering of graphene derivatives and give a hint on the mechanisms underlying the alteration of the VB structure of 2D materials upon their derivatization.

7.
Nanomaterials (Basel) ; 12(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35009995

ABSTRACT

Graphene derivatization to either engineer its physical and chemical properties or overcome the problem of the facile synthesis of nanographenes is a subject of significant attention in the nanomaterials research community. In this paper, we propose a facile and scalable method for the synthesis of thiolated graphene via a two-step liquid-phase treatment of graphene oxide (GO). Employing the core-level methods, the introduction of up to 5.1 at.% of thiols is indicated with the simultaneous rise of the C/O ratio to 16.8. The crumpling of the graphene layer upon thiolation without its perforation is pointed out by microscopic and Raman studies. The conductance of thiolated graphene is revealed to be driven by the Mott hopping mechanism with the sheet resistance values of 2.15 kΩ/sq and dependable on the environment. The preliminary results on the chemiresistive effect of these films upon exposure to ethanol vapors in the mix with dry and humid air are shown. Finally, the work function value and valence band structure of thiolated graphene are analyzed. Taken together, the developed method and findings of the morphology and physics of the thiolated graphene guide the further application of this derivative in energy storage, sensing devices, and smart materials.

8.
Sci Rep ; 10(1): 6902, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32327708

ABSTRACT

In this paper we present a facile method for the synthesis of aminated graphene derivative through simultaneous reduction and amination of graphene oxide via two-step liquid phase treatment with hydrobromic acid and ammonia solution in mild conditions. The amination degree of the obtained aminated reduced graphene oxide is of about 4 at.%, whereas C/O ratio is up to 8.8 as determined by means of X-ray photoelectron spectroscopy. The chemical reactivity of the introduced amine groups is further verified by successful test covalent bonding of the obtained aminated graphene with 3-Chlorobenzoyl chloride. The morphological features and electronic properties, namely conductivity, valence band structure and work function are studied as well, illustrating the influence of amine groups on graphene structure and physical properties. Particularly, the increase of the electrical conductivity, reduction of the work function value and tendency to form wrinkled and corrugated graphene layers are observed in the aminated graphene derivative compared to the pristine reduced graphene oxide. As obtained aminated graphene could be used for photovoltaic, biosensing and catalysis application as well as a starting material for further chemical modifications.

SELECTION OF CITATIONS
SEARCH DETAIL
...