Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: mdl-37112888

ABSTRACT

BACKGROUND: There is an urgent need to better understand the mechanisms underlying acute and long-term neurological symptoms after COVID-19. Neuropathological studies can contribute to a better understanding of some of these mechanisms. METHODS: We conducted a detailed postmortem neuropathological analysis of 32 patients who died due to COVID-19 during 2020 and 2021 in Austria. RESULTS: All cases showed diffuse white matter damage with a diffuse microglial activation of a variable severity, including one case of hemorrhagic leukoencephalopathy. Some cases revealed mild inflammatory changes, including olfactory neuritis (25%), nodular brainstem encephalitis (31%), and cranial nerve neuritis (6%), which were similar to those observed in non-COVID-19 severely ill patients. One previously immunosuppressed patient developed acute herpes simplex encephalitis. Acute vascular pathologies (acute infarcts 22%, vascular thrombosis 12%, diffuse hypoxic-ischemic brain damage 40%) and pre-existing small vessel diseases (34%) were frequent findings. Moreover, silent neurodegenerative pathologies in elderly persons were common (AD neuropathologic changes 32%, age-related neuronal and glial tau pathologies 22%, Lewy bodies 9%, argyrophilic grain disease 12.5%, TDP43 pathology 6%). CONCLUSIONS: Our results support some previous neuropathological findings of apparently multifactorial and most likely indirect brain damage in the context of SARS-CoV-2 infection rather than virus-specific damage, and they are in line with the recent experimental data on SARS-CoV-2-related diffuse white matter damage, microglial activation, and cytokine release.


Subject(s)
COVID-19 , Cognitive Dysfunction , Nervous System Diseases , Neuritis , White Matter , Humans , Aged , COVID-19/complications , SARS-CoV-2 , White Matter/pathology , Preexisting Condition Coverage , Nervous System Diseases/pathology , Cognitive Dysfunction/etiology
2.
Sci Rep ; 7: 45319, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28378743

ABSTRACT

Chronic inflammation plays a key role in both type 1 and type 2 diabetes. Cytokine and chemokine production within the islets in a diabetic milieu results in ß-cell failure and diabetes progression. Identification of targets, which both prevent macrophage activation and infiltration into islets and restore ß-cell functionality is essential for effective diabetes therapy. We report that certain Sialic-acid-binding immunoglobulin-like-lectins (siglecs) are expressed in human pancreatic islets in a cell-type specific manner. Siglec-7 was expressed on ß-cells and down-regulated in type 1 and type 2 diabetes and in infiltrating activated immune cells. Over-expression of Siglec-7 in diabetic islets reduced cytokines, prevented ß-cell dysfunction and apoptosis and reduced recruiting of migrating monocytes. Our data suggest that restoration of human Siglec-7 expression may be a novel therapeutic strategy targeted to both inhibition of immune activation and preservation of ß-cell function and survival.


Subject(s)
Antigens, Differentiation, Myelomonocytic/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/cytology , Lectins/metabolism , Monocytes/cytology , Animals , Antigens, Differentiation, Myelomonocytic/genetics , Cell Movement , Cell Survival , Cells, Cultured , Cytokines/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Down-Regulation , Humans , Insulin-Secreting Cells/metabolism , Lectins/genetics , Mice , Monocytes/metabolism , Organ Specificity
3.
Diabetes ; 64(6): 2138-47, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25804940

ABSTRACT

Diabetes diagnostic therapy and research would strongly benefit from noninvasive accurate imaging of the functional ß-cells in the pancreas. Here, we developed an analysis of functional ß-cell mass (BCM) by measuring manganese (Mn(2+)) uptake kinetics into glucose-stimulated ß-cells by T1-weighted in vivo Mn(2+)-mediated MRI (MnMRI) in C57Bl/6J mice. Weekly MRI analysis during the diabetes progression in mice fed a high-fat/high-sucrose diet (HFD) showed increased Mn(2+)-signals in the pancreas of the HFD-fed mice during the compensation phase, when glucose tolerance and glucose-stimulated insulin secretion (GSIS) were improved and BCM was increased compared with normal diet-fed mice. The increased signal was only transient; from the 4th week on, MRI signals decreased significantly in the HFD group, and the reduced MRI signal in HFD mice persisted over the whole 12-week experimental period, which again correlated with both impaired glucose tolerance and GSIS, although BCM remained unchanged. Rapid and significantly decreased MRI signals were confirmed in diabetic mice after streptozotocin (STZ) injection. No long-term effects of Mn(2+) on glucose tolerance were observed. Our optimized MnMRI protocol fulfills the requirements of noninvasive MRI analysis and detects already small changes in the functional BCM.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Insulin-Secreting Cells/metabolism , Magnetic Resonance Spectroscopy/methods , Manganese/metabolism , Animals , Diabetes Mellitus, Experimental/pathology , Insulin-Secreting Cells/pathology , Male , Mice
4.
PLoS One ; 8(1): e54106, 2013.
Article in English | MEDLINE | ID: mdl-23342086

ABSTRACT

AIMS/HYPOTHESIS: Obesity is associated with a dysregulation of beta-cell and adipocyte function. The molecular interactions between adipose tissue and beta-cells are not yet fully elucidated. We investigated, whether or not the adipocytokine Nicotinamide phosphoribosyltransferase (Nampt) and its enzymatic product Nicotinamide mononucleotide (NMN), which has been associated with obesity and type 2 diabetes mellitus (T2DM) directly influence beta-cell survival and function. METHODS: The effect of Nampt and NMN on viability of INS-1E cells was assessed by WST-1 assay. Apoptosis was measured by Annexin V/PI and TUNEL assay. Activation of apoptosis signaling pathways was evaluated. Adenylate kinase release was determined to assess cytotoxicity. Chronic and acute effects of the adipocytokine Nampt and its enzymatic product NMN on insulin secretion were assessed by glucose stimulated insulin secretion in human islets. RESULTS: While stimulation of beta-cells with the cytokines IL-1ß, TNFα and IFN-γ or palmitate significantly decreased viability, Nampt and NMN showed no direct effect on viability in INS-1E cells or in human islets, neither alone nor in the presence of pro-diabetic conditions (elevated glucose concentrations and palmitate or cytokines). At chronic conditions over 3 days of culture, Nampt and its product NMN had no effects on insulin secretion. In contrast, both Nampt and NMN potentiated glucose stimulated insulin secretion acutely during 1 h incubation of human islets. CONCLUSION/INTERPRETATION: Nampt and NMN neither influenced beta-cell viability nor apoptosis but acutely potentiated glucose stimulated insulin secretion.


Subject(s)
Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Nicotinamide Phosphoribosyltransferase/pharmacology , Adiponectin/metabolism , Animals , Apoptosis/drug effects , Blotting, Western , Cell Survival/drug effects , Glucose/pharmacology , Humans , Insulin/metabolism , Insulin Secretion , Leptin/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...