Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(11): E2156-E2165, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28235784

ABSTRACT

The P2X7 receptor (P2X7R) belongs to the P2X family of ATP-gated cation channels. P2X7Rs are expressed in epithelial cells, leukocytes, and microglia, and they play important roles in immunological and inflammatory processes. P2X7Rs are obligate homotrimers, with each subunit having two transmembrane helices, TM1 and TM2. Structural and functional data regarding the P2X2 and P2X4 receptors indicate that the central trihelical TM2 bundle forms the intrinsic transmembrane channel of P2X receptors. Here, we studied the accessibility of single cysteines substituted along the pre-TM2 and TM2 helix (residues 327-357) of the P2X7R using as readouts (i) the covalent maleimide fluorescence accessibility of the surface-bound P2X7R and (ii) covalent modulation of macroscopic and single-channel currents using extracellularly and intracellularly applied methanethiosulfonate (MTS) reagents. We found that the channel opening extends from the pre-TM2 region through the outer half of the trihelical TM2 channel. Covalently adducted MTS ethylammonium+ (MTSEA+) strongly increased the probability that the channel was open by delaying channel closing of seven of eight responsive human P2X7R (hP2X7R) mutants. Structural modeling, as supported by experimental probing, suggested that resulting intraluminal hydrogen bonding interactions stabilize the open-channel state. The additional decrease in single-channel conductance by MTSEA+ in five of seven positions identified Y336, S339, L341C, Y343, and G345 as the narrowest part of the channel lumen. The gate and ion-selectivity filter of the P2X7R could be colocalized at and around residue S342. None of our results provided any evidence for dilation of the hP2X7R channel on sustained stimulation with ATP4.


Subject(s)
Ion Channel Gating , Receptors, Purinergic P2X7/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Substitution , Carbocyanines/chemistry , Cysteine/chemistry , Cysteine/genetics , Hydrogen Bonding , Ion Channel Gating/genetics , Models, Molecular , Protein Conformation , Protein Transport , Receptors, Purinergic P2X7/chemistry , Receptors, Purinergic P2X7/genetics , Structure-Activity Relationship
2.
Pflugers Arch ; 467(10): 2121-40, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25592660

ABSTRACT

The P2X7 receptor (P2X7R) is a ligand-gated ion channel that conducts Na(+), K(+), and Ca(2+) when activated by extracellular ATP. In various cell types, such as secretory epithelia, the P2X7R is co-expressed with Ca(2+)-dependent Cl(-) channels of the TMEM16/anoctamin family. Here, we studied whether the P2X7R and TMEM16A/anoctamin-1 (Ano1) or TMEM16F/anoctamin-6 (Ano6) interact functionally and physically, using oocytes of Xenopus laevis and Ambystoma mexicanum (Axolotl) for heterologous expression. As a control, we co-expressed anoctamin-1 with the P2Y1 receptor (P2Y1R), which induces the release of Ca(2+) from intracellular stores via activating phospholipase C through coupling to Gαq. We found that co-expression of anoctamin-1 with the P2Y1R resulted in a small transient increase in Cl(-) conductance in response to ATP. Co-expression of anoctamin-1 with the P2X7R resulted in a large sustained increase in Cl(-) conductance via Ca(2+) influx through the ATP-opened P2X7R in Xenopus and in Axolotl oocytes, which lack endogenous Ca(2+)-dependent Cl(-) channels. P2Y1R- or P2X7R-mediated stimulation of Ano1 was primarily functional, as demonstrated by the absence of a physically stable interaction between Ano1 and the P2X7R. In the pancreatic cell line AsPC-1, we found the same functional Ca(2+)-dependent interaction of P2X7R and Ano1. The P2X7R-mediated sustained activation of Ano1 may be physiologically relevant to the time course of stimulus-secretion coupling in secretory epithelia. No such increase in Cl(-) conductance could be elicited by activating the P2X7 receptor in either Xenopus oocytes or Axolotl oocytes co-expressing Ano6. The lack of function of Ano6 can, at least in part, be explained by its poor cell-surface expression, resulting from a relatively inefficient exit of the homodimeric Ano6 from the endoplasmic reticulum.


Subject(s)
Calcium Signaling , Chloride Channels/metabolism , Phospholipid Transfer Proteins/metabolism , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2Y1/metabolism , Action Potentials , Ambystoma mexicanum , Animals , Anoctamin-1 , Anoctamins , Cell Line, Tumor , Humans , Mice , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...