Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Environ Microbiome ; 15(1): 7, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-33902713

ABSTRACT

BACKGROUND: Anaerobic digestion (AD) of protein-rich grass silage was performed in experimental two-stage two-phase biogas reactor systems at low vs. increased organic loading rates (OLRs) under mesophilic (37 °C) and thermophilic (55 °C) temperatures. To follow the adaptive response of the biomass-attached cellulolytic/hydrolytic biofilms at increasing ammonium/ammonia contents, genome-centered metagenomics and transcriptional profiling based on metagenome assembled genomes (MAGs) were conducted. RESULTS: In total, 78 bacterial and archaeal MAGs representing the most abundant members of the communities, and featuring defined quality criteria were selected and characterized in detail. Determination of MAG abundances under the tested conditions by mapping of the obtained metagenome sequence reads to the MAGs revealed that MAG abundance profiles were mainly shaped by the temperature but also by the OLR. However, the OLR effect was more pronounced for the mesophilic systems as compared to the thermophilic ones. In contrast, metatranscriptome mapping to MAGs subsequently normalized to MAG abundances showed that under thermophilic conditions, MAGs respond to increased OLRs by shifting their transcriptional activities mainly without adjusting their proliferation rates. This is a clear difference compared to the behavior of the microbiome under mesophilic conditions. Here, the response to increased OLRs involved adjusting of proliferation rates and corresponding transcriptional activities. The analysis led to the identification of MAGs positively responding to increased OLRs. The most outstanding MAGs in this regard, obviously well adapted to higher OLRs and/or associated conditions, were assigned to the order Clostridiales (Acetivibrio sp.) for the mesophilic biofilm and the orders Bacteroidales (Prevotella sp. and an unknown species), Lachnospirales (Herbinix sp. and Kineothrix sp.) and Clostridiales (Clostridium sp.) for the thermophilic biofilm. Genome-based metabolic reconstruction and transcriptional profiling revealed that positively responding MAGs mainly are involved in hydrolysis of grass silage, acidogenesis and / or acetogenesis. CONCLUSIONS: An integrated -omics approach enabled the identification of new AD biofilm keystone species featuring outstanding performance under stress conditions such as increased OLRs. Genome-based knowledge on the metabolic potential and transcriptional activity of responsive microbiome members will contribute to the development of improved microbiological AD management strategies for biomethanation of renewable biomass.

2.
Microb Biotechnol ; 11(4): 667-679, 2018 07.
Article in English | MEDLINE | ID: mdl-29205917

ABSTRACT

Biogas production is performed anaerobically by complex microbial communities with key species driving the process. Hence, analyses of their in situ activities are crucial to understand the process. In a previous study, metagenome sequencing and subsequent genome binning for different production-scale biogas plants (BGPs) resulted in four genome bins of special interest, assigned to the phyla Thermotogae, Fusobacteria, Spirochaetes and Cloacimonetes, respectively, that were genetically analysed. In this study, metatranscriptome sequencing of the same BGP samples was conducted, enabling in situ transcriptional activity determination of these genome bins. For this, mapping of metatranscriptome reads on genome bin sequences was performed providing transcripts per million (TPM) values for each gene. This approach revealed an active sugar-based metabolism of the Thermotogae and Spirochaetes bins and an active amino acid-based metabolism of the Fusobacteria and Cloacimonetes bins. The data also hint at syntrophic associations of the four corresponding species with methanogenic Archaea.


Subject(s)
Bacteria/metabolism , Biofuels/analysis , Bioreactors/microbiology , Gases/metabolism , Methane/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Microbial Consortia , Phylogeny
3.
Biotechnol Biofuels ; 10: 264, 2017.
Article in English | MEDLINE | ID: mdl-29158776

ABSTRACT

BACKGROUND: To elucidate biogas microbial communities and processes, the application of high-throughput DNA analysis approaches is becoming increasingly important. Unfortunately, generated data can only partialy be interpreted rudimentary since databases lack reference sequences. RESULTS: Novel cellulolytic, hydrolytic, and acidogenic/acetogenic Bacteria as well as methanogenic Archaea originating from different anaerobic digestion communities were analyzed on the genomic level to assess their role in biomass decomposition and biogas production. Some of the analyzed bacterial strains were recently described as new species and even genera, namely Herbinix hemicellulosilytica T3/55T, Herbinix luporum SD1DT, Clostridium bornimense M2/40T, Proteiniphilum saccharofermentans M3/6T, Fermentimonas caenicola ING2-E5BT, and Petrimonas mucosa ING2-E5AT. High-throughput genome sequencing of 22 anaerobic digestion isolates enabled functional genome interpretation, metabolic reconstruction, and prediction of microbial traits regarding their abilities to utilize complex bio-polymers and to perform specific fermentation pathways. To determine the prevalence of the isolates included in this study in different biogas systems, corresponding metagenome fragment mappings were done. Methanoculleus bourgensis was found to be abundant in three mesophilic biogas plants studied and slightly less abundant in a thermophilic biogas plant, whereas Defluviitoga tunisiensis was only prominent in the thermophilic system. Moreover, several of the analyzed species were clearly detectable in the mesophilic biogas plants, but appeared to be only moderately abundant. Among the species for which genome sequence information was publicly available prior to this study, only the species Amphibacillus xylanus, Clostridium clariflavum, and Lactobacillus acidophilus are of importance for the biogas microbiomes analyzed, but did not reach the level of abundance as determined for M. bourgensis and D. tunisiensis. CONCLUSIONS: Isolation of key anaerobic digestion microorganisms and their functional interpretation was achieved by application of elaborated cultivation techniques and subsequent genome analyses. New isolates and their genome information extend the repository covering anaerobic digestion community members.

4.
J Biotechnol ; 261: 10-23, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-28823476

ABSTRACT

Metagenomics has proven to be one of the most important research fields for microbial ecology during the last decade. Starting from 16S rRNA marker gene analysis for the characterization of community compositions to whole metagenome shotgun sequencing which additionally allows for functional analysis, metagenomics has been applied in a wide spectrum of research areas. The cost reduction paired with the increase in the amount of data due to the advent of next-generation sequencing led to a rapidly growing demand for bioinformatic software in metagenomics. By now, a large number of tools that can be used to analyze metagenomic datasets has been developed. The Bielefeld-Gießen center for microbial bioinformatics as part of the German Network for Bioinformatics Infrastructure bundles and imparts expert knowledge in the analysis of metagenomic datasets, especially in research on microbial communities involved in anaerobic digestion residing in biogas reactors. In this review, we give an overview of the field of metagenomics, introduce into important bioinformatic tools and possible workflows, accompanied by application examples of biogas surveys successfully conducted at the Center for Biotechnology of Bielefeld University.


Subject(s)
Biofuels/microbiology , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Metagenome/genetics , Metagenomics/methods , Anaerobiosis
5.
J Microbiol Biotechnol ; 27(2): 321-334, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-27780961

ABSTRACT

Process surveillance within agricultural biogas plants (BGPs) was concurrently studied by high-throughput 16S rRNA gene amplicon sequencing and an optimized quantitative microscopic fingerprinting (QMF) technique. In contrast to 16S rRNA gene amplicons, digitalized microscopy is a rapid and cost-effective method that facilitates enumeration and morphological differentiation of the most significant groups of methanogens regarding their shape and characteristic autofluorescent factor 420. Moreover, the fluorescence signal mirrors cell vitality. In this study, four different BGPs were investigated. The results indicated stable process performance in the mesophilic BGPs and in the thermophilic reactor. Bacterial subcommunity characterization revealed significant differences between the four BGPs. Most remarkably, the genera Defluviitoga and Halocella dominated the thermophilic bacterial subcommunity, whereas members of another taxon, Syntrophaceticus, were found to be abundant in the mesophilic BGP. The domain Archaea was dominated by the genus Methanoculleus in all four BGPs, followed by Methanosaeta in BGP1 and BGP3. In contrast, Methanothermobacter members were highly abundant in the thermophilic BGP4. Furthermore, a high consistency between the sequencing approach and the QMF method was shown, especially for the thermophilic BGP. The differences elucidated that using this biphasic approach for mesophilic BGPs provided novel insights regarding disaggregated single cells of Methanosarcina and Methanosaeta species. Both dominated the archaeal subcommunity and replaced coccoid Methanoculleus members belonging to the same group of Methanomicrobiales that have been frequently observed in similar BGPs. This work demonstrates that combining QMF and 16S rRNA gene amplicon sequencing is a complementary strategy to describe archaeal community structures within biogas processes.


Subject(s)
Archaea/classification , Archaea/isolation & purification , Bioreactors , Microbial Consortia , Sewage/microbiology , Agriculture , Anaerobiosis , Archaea/genetics , Archaea/ultrastructure , Biofuels/microbiology , DNA Fingerprinting/methods , Genes, rRNA , High-Throughput Nucleotide Sequencing , Methanobacteriaceae/genetics , Methanobacteriaceae/isolation & purification , Microbial Consortia/genetics , Microscopy , Phylogeny , RNA, Ribosomal, 16S/genetics , Sewage/analysis
6.
Biotechnol Biofuels ; 9: 171, 2016.
Article in English | MEDLINE | ID: mdl-27525040

ABSTRACT

BACKGROUND: One of the most promising technologies to sustainably produce energy and to mitigate greenhouse gas emissions from combustion of fossil energy carriers is the anaerobic digestion and biomethanation of organic raw material and waste towards biogas by highly diverse microbial consortia. In this context, the microbial systems ecology of thermophilic industrial-scale biogas plants is poorly understood. RESULTS: The microbial community structure of an exemplary thermophilic biogas plant was analyzed by a comprehensive approach comprising the analysis of the microbial metagenome and metatranscriptome complemented by the cultivation of hydrolytic and acido-/acetogenic Bacteria as well as methanogenic Archaea. Analysis of metagenome-derived 16S rRNA gene sequences revealed that the bacterial genera Defluviitoga (5.5 %), Halocella (3.5 %), Clostridium sensu stricto (1.9 %), Clostridium cluster III (1.5 %), and Tepidimicrobium (0.7 %) were most abundant. Among the Archaea, Methanoculleus (2.8 %) and Methanothermobacter (0.8 %) were predominant. As revealed by a metatranscriptomic 16S rRNA analysis, Defluviitoga (9.2 %), Clostridium cluster III (4.8 %), and Tepidanaerobacter (1.1 %) as well as Methanoculleus (5.7 %) mainly contributed to these sequence tags indicating their metabolic activity, whereas Hallocella (1.8 %), Tepidimicrobium (0.5 %), and Methanothermobacter (<0.1 %) were transcriptionally less active. By applying 11 different cultivation strategies, 52 taxonomically different microbial isolates representing the classes Clostridia, Bacilli, Thermotogae, Methanomicrobia and Methanobacteria were obtained. Genome analyses of isolates support the finding that, besides Clostridium thermocellum and Clostridium stercorarium, Defluviitoga tunisiensis participated in the hydrolysis of hemicellulose producing ethanol, acetate, and H2/CO2. The latter three metabolites are substrates for hydrogentrophic and acetoclastic archaeal methanogenesis. CONCLUSIONS: Obtained results showed that high abundance of microorganisms as deduced from metagenome analysis does not necessarily indicate high transcriptional or metabolic activity, and vice versa. Additionally, it appeared that the microbiome of the investigated thermophilic biogas plant comprised a huge number of up to now unknown and insufficiently characterized species.

7.
Biotechnol Biofuels ; 9: 156, 2016.
Article in English | MEDLINE | ID: mdl-27462367

ABSTRACT

BACKGROUND: Biofuel production from conversion of biomass is indispensable in the portfolio of renewable energies. Complex microbial communities are involved in the anaerobic digestion process of plant material, agricultural residual products and food wastes. Analysis of the genetic potential and microbiology of communities degrading biomass to biofuels is considered to be the key to develop process optimisation strategies. Hence, due to the still incomplete taxonomic and functional characterisation of corresponding communities, new and unknown species are of special interest. RESULTS: Three mesophilic and one thermophilic production-scale biogas plants (BGPs) were taxonomically profiled using high-throughput 16S rRNA gene amplicon sequencing. All BGPs shared a core microbiome with the thermophilic BGP featuring the lowest diversity. However, the phyla Cloacimonetes and Spirochaetes were unique to BGPs 2 and 3, Fusobacteria were only found in BGP3 and members of the phylum Thermotogae were present only in the thermophilic BGP4. Taxonomic analyses revealed that these distinctive taxa mostly represent so far unknown species. The only exception is the dominant Thermotogae OTU featuring 16S rRNA gene sequence identity to Defluviitoga tunisiensis L3, a sequenced and characterised strain. To further investigate the genetic potential of the biogas communities, corresponding metagenomes were sequenced in a deepness of 347.5 Gbp in total. A combined assembly comprised 80.3 % of all reads and resulted in the prediction of 1.59 million genes on assembled contigs. Genome binning yielded genome bins comprising the prevalent distinctive phyla Cloacimonetes, Spirochaetes, Fusobacteria and Thermotogae. Comparative genome analyses between the most dominant Thermotogae bin and the very closely related Defluviitoga tunisiensis L3 genome originating from the same BGP revealed high genetic similarity. This finding confirmed applicability and reliability of the binning approach. The four highly covered genome bins of the other three distinct phyla showed low or very low genetic similarities to their closest phylogenetic relatives, and therefore indicated their novelty. CONCLUSIONS: In this study, the 16S rRNA gene sequencing approach and a combined metagenome assembly and binning approach were used for the first time on different production-scale biogas plants and revealed insights into the genetic potential and functional role of so far unknown species.

8.
J Biotechnol ; 231: 268-279, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27312700

ABSTRACT

To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The community's cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the community's metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins.


Subject(s)
Biofuels/microbiology , Bioreactors/microbiology , Metagenome/genetics , Microbial Consortia/genetics , Proteome/analysis , Databases, Protein , Electrophoresis, Gel, Two-Dimensional , Proteome/genetics
9.
J Biotechnol ; 232: 50-60, 2016 Aug 20.
Article in English | MEDLINE | ID: mdl-27165504

ABSTRACT

The genome sequence of Defluviitoga tunisiensis L3 originating from a thermophilic biogas-production plant was established and recently published as Genome Announcement by our group. The circular chromosome of D. tunisiensis L3 has a size of 2,053,097bp and a mean GC content of 31.38%. To analyze the D. tunisiensis L3 genome sequence in more detail, a phylogenetic analysis of completely sequenced Thermotogae strains based on shared core genes was performed. It appeared that Petrotoga mobilis DSM 10674(T), originally isolated from a North Sea oil-production well, is the closest relative of D. tunisiensis L3. Comparative genome analyses of P. mobilis DSM 10674(T) and D. tunisiensis L3 showed moderate similarities regarding occurrence of orthologous genes. Both genomes share a common set of 1351 core genes. Reconstruction of metabolic pathways important for the biogas production process revealed that the D. tunisiensis L3 genome encodes a large set of genes predicted to facilitate utilization of a variety of complex polysaccharides including cellulose, chitin and xylan. Ethanol, acetate, hydrogen (H2) and carbon dioxide (CO2) were found as possible end-products of the fermentation process. The latter three metabolites are considered to represent substrates for methanogenic Archaea, the key organisms in the final step of the anaerobic digestion process. To determine the degree of relatedness between D. tunisiensis L3 and dominant biogas community members within the thermophilic biogas-production plant, metagenome sequences obtained from the corresponding microbial community were mapped onto the L3 genome sequence. This fragment recruitment revealed that the D. tunisiensis L3 genome is almost completely covered with metagenome sequences featuring high matching accuracy. This result indicates that strains highly related or even identical to the reference strain D. tunisiensis L3 play a dominant role within the community of the thermophilic biogas-production plant.


Subject(s)
Bacteria/genetics , Biofuels/microbiology , Genome, Bacterial/genetics , Metagenome/genetics
10.
Bioengineering (Basel) ; 3(1)2016 Jan 13.
Article in English | MEDLINE | ID: mdl-28952569

ABSTRACT

Five institutional partners participated in an interlaboratory comparison of nucleic acid extraction, RNA preservation and quantitative Real-Time PCR (qPCR) based assays for biogas biocenoses derived from different grass silage digesting laboratory and pilot scale fermenters. A kit format DNA extraction system based on physical and chemical lysis with excellent extraction efficiency yielded highly reproducible results among the partners and clearly outperformed a traditional CTAB/chloroform/isoamylalcohol based method. Analytical purpose, sample texture, consistency and upstream pretreatment steps determine the modifications that should be applied to achieve maximum efficiency in the trade-off between extract purity and nucleic acid recovery rate. RNA extraction was much more variable, and the destination of the extract determines the method to be used. RNA stabilization with quaternary ammonium salts was an as satisfactory approach as flash freezing in liquid N2. Due to co-eluted impurities, spectrophotometry proved to be of limited value for nucleic acid qualification and quantification in extracts obtained with the kit, and picoGreen® based quantification was more trustworthy. Absorbance at 230 nm can be extremely high in the presence of certain chaotropic guanidine salts, but guanidinium isothiocyanate does not affect (q)PCR. Absolute quantification by qPCR requires application of a reliable internal standard for which correct PCR efficiency and Y-intercept values are important and must be reported.

11.
J Biotechnol ; 203: 17-8, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-25801333

ABSTRACT

An anaerobic, thermophilic bacterium belonging to the phylum Thermotogae was isolated from a rural, thermophilic biogas plant (54°C) producing methane-rich biogas from maize silage, barley, cattle and pig manure. Here we report the first complete genome sequence of the Defluviitoga tunisiensis strain L3, an isolate from the family Thermotogaceae. The strain L3 encodes several genes predicted to be involved in utilization of a large diversity of complex carbohydrates including cellobiose and xylan for the production of acetate, hydrogen (H2) and carbon dioxide (CO2). The genome sequence of D. tunisiensis L3 provides the basis for biotechnological exploitation of genetic determinants playing an important role in thermophilic fermentation processes utilizing renewable primary products.


Subject(s)
Alphaproteobacteria/genetics , Genome, Bacterial , Base Sequence , Genes, Bacterial , Molecular Sequence Data , Sequence Analysis, DNA
12.
Biotechnol Biofuels ; 8: 14, 2015.
Article in English | MEDLINE | ID: mdl-25688290

ABSTRACT

BACKGROUND: Decomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potential of a biogas-producing microbial community in an agricultural biogas reactor operating under wet fermentation conditions was analyzed by a metagenomic approach applying 454-pyrosequencing. The obtained metagenomic dataset and corresponding 16S rRNA gene amplicon sequences were compared to the previously sequenced comparable metagenome from a dry fermentation process, meeting explicitly identical boundary conditions regarding sample and community DNA preparation, sequencing technology, processing of sequence reads and data analyses by bioinformatics tools. RESULTS: High-throughput metagenome sequencing of community DNA from the wet fermentation process applying the pyrosequencing approach resulted in 1,532,780 reads, with an average read length of 397 bp, accounting for approximately 594 million bases of sequence information in total. Taxonomic comparison of the communities from wet and dry fermentation revealed similar microbial profiles with Bacteria being the predominant superkingdom, while the superkingdom Archaea was less abundant. In both biogas plants, the bacterial phyla Firmicutes, Bacteroidetes, Spirochaetes and Proteobacteria were identified with descending frequencies. Within the archaeal superkingdom, the phylum Euryarchaeota was most abundant with the dominant class Methanomicrobia. Functional profiles of the communities revealed that environmental gene tags representing methanogenesis enzymes were present in both biogas plants in comparable frequencies. 16S rRNA gene amplicon high-throughput sequencing disclosed differences in the sub-communities comprising methanogenic Archaea between both processes. Fragment recruitments of metagenomic reads to the reference genome of the archaeon Methanoculleus bourgensis MS2(T) revealed that dominant methanogens within the dry fermentation process were highly related to the reference. CONCLUSIONS: Although process parameters, substrates and technology differ between the wet and dry biogas fermentations analyzed in this study, community profiles are very similar at least at higher taxonomic ranks, illustrating that core community taxa perform key functions in biomass decomposition and methane synthesis. Regarding methanogenesis, Archaea highly related to the type strain M. bourgensis MS2(T) dominate the dry fermentation process, suggesting the adaptation of members belonging to this species to specific fermentation process parameters.

13.
J Biotechnol ; 201: 43-53, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25455016

ABSTRACT

The final step of the biogas production process, the methanogenesis, is frequently dominated by members of the genus Methanoculleus. In particular, the species Methanoculleus bourgensis was identified to play a role in different biogas reactor systems. The genome of the type strain M. bourgensis MS2(T), originally isolated from a sewage sludge digestor, was completely sequenced to analyze putative adaptive genome features conferring competitiveness within biogas reactor environments to the strain. Sequencing and assembly of the M. bourgensis MS2(T) genome yielded a chromosome with a size of 2,789,773 bp. Comparative analysis of M. bourgensis MS2(T) and Methanoculleus marisnigri JR1 revealed significant similarities. The absence of genes for a putative ammonium uptake system may indicate that M. bourgensis MS2(T) is adapted to environments rich in ammonium/ammonia. Specific genes featuring predicted functions in the context of osmolyte production were detected in the genome of M. bourgensis MS2(T). Mapping of metagenome sequences derived from a production-scale biogas plant revealed that M. bourgensis MS2(T) almost completely comprises the genetic information of dominant methanogens present in the biogas reactor analyzed. Hence, availability of the M. bourgensis MS2(T) genome sequence may be valuable regarding further research addressing the performance of Methanoculleus species in agricultural biogas plants.


Subject(s)
Biofuels , Genome, Archaeal/genetics , Methanomicrobiaceae/genetics , Chromosomes, Archaeal/genetics , DNA, Archaeal/genetics , Nitrogen/metabolism
14.
J Biotechnol ; 192 Pt A: 40-1, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25270020

ABSTRACT

The neotype strain Methanobacterium formicicum MF(T) (DSM1535), a hydrogenotrophic methanogenic Archaeon, was isolated from a domestic sewage sludge digestor in Urbana (IL, USA). Here, the complete genome sequence of the methanogen is reported. The genome is 2,478,074bp in size, featuring a GC content of 41.23%. M. formicicum MF(T) encodes several genes predicted to be involved in adaptation to abiotic stress such as high osmolarity. The strain MF(T) is of biotechnological importance since M. formicicum strains are often found in production-scale biogas plants and it is suggested as a starter culture for the anaerobic biomethanation process.


Subject(s)
Genome, Bacterial , Methanobacterium/genetics , Base Sequence , Methane/metabolism , Methanobacterium/metabolism , Molecular Sequence Data , Sequence Analysis, DNA , Waste Disposal, Fluid
15.
Microbiology (Reading) ; 158(Pt 8): 2060-2072, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22653947

ABSTRACT

The application of toxic triphenylmethane dyes such as crystal violet (CV) in various industrial processes leads to large amounts of dye-contaminated sludges that need to be detoxified. Specific bacteria residing in wastewater treatment plants (WWTPs) are able to degrade triphenylmethane dyes. The objective of this work was to gain insights into the genetic background of bacterial strains capable of CV degradation. Three bacterial strains isolated from a municipal WWTP harboured IncP-1ß plasmids mediating resistance to and decolorization of CV. These isolates were assigned to the genera Comamonas and Delftia. The CV-resistance plasmid pKV29 from Delftia sp. KV29 was completely sequenced. In addition, nucleotide sequences of the accessory regions involved in conferring CV resistance were determined for plasmids pKV11 and pKV36 from the other two isolates. Plasmid pKV29 contains typical IncP-1ß backbone modules that are highly similar to those of previously sequenced IncP-1ß plasmids that confer antibiotic resistance, degradative capabilities or mercury resistance. The accessory regions located between the conjugative transfer (tra) and mating pair formation modules (trb) of all three plasmids analysed share common modules and include a triphenylmethane reductase gene, tmr, that is responsible for decolorization of CV. Moreover, these accessory regions encode other enzymes that are dispensable for CV degradation and hence are involved in so-far-unknown metabolic pathways. Analysis of plasmid-mediated degradation of CV in Escherichia coli by ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight MS revealed that leuco crystal violet was the first degradation product. Michler's ketone and 4-dimethylaminobenzaldehyde appeared as secondary degradation metabolites. Enzymes encoded in the E. coli chromosome seem to be responsible for cleavage of leuco crystal violet. Plasmid-mediated degradation of triphenylmethane dyes such as CV is an option for the biotechnological treatment of sludges contaminated with these dyes.


Subject(s)
Comamonas/metabolism , Delftia/metabolism , Gentian Violet/metabolism , Plasmids/genetics , Trityl Compounds/metabolism , Wastewater/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Comamonas/classification , Comamonas/genetics , Comamonas/isolation & purification , Delftia/classification , Delftia/genetics , Delftia/isolation & purification , Molecular Sequence Data , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plasmids/metabolism , Sewage/microbiology , Waste Disposal, Fluid/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...