Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(10)2022 09 21.
Article in English | MEDLINE | ID: mdl-36298647

ABSTRACT

Hepadnaviruses are partially double-stranded DNA viruses that infect a variety of species. The prototypical virus in this family is the human hepatitis B virus, which chronically infects approximately 400 million people worldwide and is a risk factor for progressive liver disease and liver cancer. The first hepadnavirus isolated from carnivores was a domestic cat hepadnavirus (DCH), initially identified in Australia and subsequently detected in cats in Europe and Asia. As with all characterized hepadnaviruses so far, DCH infection has been associated with hepatic disease in its host. Prevalence of this infection in the United States has not been explored broadly. Thus, we utilized conventional and quantitative PCR to screen several populations of domestic cats to estimate DCH prevalence in the United States. We detected DCH DNA in 1 out of 496 animals (0.2%) in the U.S. cohort. In contrast, we detected circulating DCH DNA in 7 positive animals from a cohort of 67 domestic cats from Australia (10.4%), consistent with previous studies. The complete consensus genome of the U.S. DCH isolate was sequenced by Sanger sequencing with overlapping PCR products. An in-frame deletion of 157 bp was identified in the N-terminus of the core open reading frame. The deletion begins at the direct repeat 1 sequence (i.e., the 5' end of the expected double-stranded linear DNA form), consistent with covalently closed circular DNA resultant from illegitimate recombination described in other hepadnaviruses. Comparative genome sequence analysis indicated that the closest described relatives of the U.S. DCH isolate are those previously isolated in Italy. Motif analysis supports DCH using NTCP as an entry receptor, similar to human HBV. Our work indicates that chronic DCH prevalence in the U.S. is likely low compared to other countries.


Subject(s)
Hepadnaviridae , Cats , Humans , United States/epidemiology , Animals , Hepadnaviridae/genetics , Prevalence , Hepatitis B virus/genetics , Sequence Analysis, DNA/veterinary , DNA, Circular , Genomics , DNA, Viral/genetics
2.
Bioorg Med Chem Lett ; 28(10): 1879-1886, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29673980

ABSTRACT

Compounds based on the 2,3-distyrylindole scaffold were found to exhibit bactericidal properties upon irradiation with white light. At the concentration of 1 µM, the lead compound 1 completely (ca. 109 CFU/mL) eradicated such Gram-positive organisms as S. aureus (MRSA, MSSA), E. faecalis (VRE), S. pyogenes and S. mutans when irradiated with white light for 2 min. At the concentration of 5 µM and in the presence of polymyxin E at non-bactericidal 1.25 µg/mL concentration, 1 also showed a 7-log to 9-log reductions in bacterial counts of such Gram-negative organisms as multi-drug resistant (MDR) A. baumannii, MDR P. aeruginosa, E. coli and Klebsiella pneumoniae (CRE: KPC and NDM-1), also when irradiated with white light for 2 min. The structure-activity relationship studies revealed that unsubstituted at benzene rings 2,3-distyrylindole 2 was most potent and gave a 5-order of magnitude eradication of a MRSA strain at the concentration of 30 nM upon irradiation with white light. Initial mechanistic experiments revealed the disruption of bacterial cell membrane, but indicated that singlet oxygen production, which is commonly associated with photodynamic therapy, may not play a role in the bactericidal effects of the 2,3-distyrylindoles.


Subject(s)
Anti-Bacterial Agents/chemistry , Indoles/chemistry , Anti-Bacterial Agents/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Indoles/pharmacology , Light , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Singlet Oxygen/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...