Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nature ; 576(7786): 223-227, 2019 12.
Article in English | MEDLINE | ID: mdl-31802005

ABSTRACT

NASA's Parker Solar Probe mission1 recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: 'impulsive' events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in electrons, helium-3 and heavier ions2, and 'gradual' events3,4, which are typically associated with large coronal-mass-ejection-driven shocks and compressions moving through the corona and inner solar wind and are the dominant source of protons with energies between 1 and 10 megaelectronvolts. However, some events show aspects of both processes and the electron-proton ratio is not bimodally distributed, as would be expected if there were only two possible processes5. These processes have been very difficult to resolve from prior observations, owing to the various transport effects that affect the energetic particle population en route to more distant spacecraft6. Here we report observations of the near-Sun energetic particle radiation environment over the first two orbits of the probe. We find a variety of energetic particle events accelerated both locally and remotely including by corotating interaction regions, impulsive events driven by acceleration near the Sun, and an event related to a coronal mass ejection. We provide direct observations of the energetic particle radiation environment in the region just above the corona of the Sun and directly explore the physics of particle acceleration and transport.

2.
JAMA Surg ; 152(8)Aug. 2017.
Article in English | BIGG - GRADE guidelines | ID: biblio-948342

ABSTRACT

IMPORTANCE: The human and financial costs of treating surgical site infections (SSIs) are increasing. The number of surgical procedures performed in the United States continues to rise, and surgical patients are initially seen with increasingly complex comorbidities. It is estimated that approximately half of SSIs are deemed preventable using evidence-based strategies. OBJECTIVE: To provide new and updated evidence-based recommendations for the prevention of SSI. EVIDENCE REVIEW: A targeted systematic review of the literature was conducted in MEDLINE, EMBASE, CINAHL, and the Cochrane Library from 1998 through April 2014. A modified Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach was used to assess the quality of evidence and the strength of the resulting recommendation and to provide explicit links between them. Of 5759 titles and abstracts screened, 896 underwent full-text review by 2 independent reviewers. After exclusions, 170 studies were extracted into evidence tables, appraised, and synthesized. FINDINGS: Before surgery, patients should shower or bathe (full body) with soap (antimicrobial or nonantimicrobial) or an antiseptic agent on at least the night before the operative day. Antimicrobial prophylaxis should be administered only when indicated based on published clinical practice guidelines and timed such that a bactericidal concentration of the agents is established in the serum and tissues when the incision is made. In cesarean section procedures, antimicrobial prophylaxis should be administered before skin incision. Skin preparation in the operating room should be performed using an alcohol-based agent unless contraindicated. For clean and clean-contaminated procedures, additional prophylactic antimicrobial agent doses should not be administered after the surgical incision is closed in the operating room, even in the presence of a drain. Topical antimicrobial agents should not be applied to the surgical incision. During surgery, glycemic control should be implemented using blood glucose target levels less than 200 mg/dL, and normothermia should be maintained in all patients. Increased fraction of inspired oxygen should be administered during surgery and after extubation in the immediate postoperative period for patients with normal pulmonary function undergoing general anesthesia with endotracheal intubation. Transfusion of blood products should not be withheld from surgical patients as a means to prevent SSI. CONCLUSIONS AND RELEVANCE: This guideline is intended to provide new and updated evidence-based recommendations for the prevention of SSI and should be incorporated into comprehensive surgical quality improvement programs to improve patient safety.


Subject(s)
Humans , Postoperative Care/methods , Surgical Wound Infection/prevention & control , Asepsis , Antibiotic Prophylaxis/methods , Immunosuppressive Agents/administration & dosage , Injections, Intra-Articular , Anticoagulants/administration & dosage , Noxae/administration & dosage
3.
Science ; 352(6286): 677-80, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27103666

ABSTRACT

Iron-60 ((60)Fe) is a radioactive isotope in cosmic rays that serves as a clock to infer an upper limit on the time between nucleosynthesis and acceleration. We have used the ACE-CRIS instrument to collect 3.55 × 10(5) iron nuclei, with energies ~195 to ~500 mega-electron volts per nucleon, of which we identify 15 (60)Fe nuclei. The (60)Fe/(56)Fe source ratio is (7.5 ± 2.9) × 10(-5) The detection of supernova-produced (60)Fe in cosmic rays implies that the time required for acceleration and transport to Earth does not greatly exceed the (60)Fe half-life of 2.6 million years and that the (60)Fe source distance does not greatly exceed the distance cosmic rays can diffuse over this time, ⪍1 kiloparsec. A natural place for (60)Fe origin is in nearby clusters of massive stars.

4.
Astrophys J ; 831(1)2016 Nov 01.
Article in English | MEDLINE | ID: mdl-34646042

ABSTRACT

Since 2012 August Voyager 1 has been observing the local interstellar energy spectra of Galactic cosmic-ray nuclei down to 3 MeV nuc-1 and electrons down to 2.7 MeV. The H and He spectra have the same energy dependence between 3 and 346 MeV nuc-1, with a broad maximum in the 10-50 MeV nuc-1 range and a H/He ratio of 12.2 ± 0.9. The peak H intensity is ~15 times that observed at 1 AU, and the observed local interstellar gradient of 3-346 MeV H is -0.009 ± 0.055% AU-1, consistent with models having no local interstellar gradient. The energy spectrum of electrons (e - + e +) with 2.7-74 MeV is consistent with E -1.30±0.05 and exceeds the H intensity at energies below ~50 MeV. Propagation model fits to the observed spectra indicate that the energy density of cosmic-ray nuclei with >3 MeV nuc-1 and electrons with >3 MeV is 0.83-1.02 eV cm-3 and the ionization rate of atomic H is in the range of 1.51-1.64 × 10-17 s-1. This rate is a factor >10 lower than the ionization rate in diffuse interstellar clouds, suggesting significant spatial inhomogeneity in low-energy cosmic rays or the presence of a suprathermal tail on the energy spectrum at much lower energies. The propagation model fits also provide improved estimates of the elemental abundances in the source of Galactic cosmic rays.

6.
Science ; 341(6142): 147-50, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23811226

ABSTRACT

Magnetic fields measured by Voyager 1 (V1) show that the spacecraft crossed the boundary of an unexpected region five times between days 210 and ~238 in 2012. The magnetic field strength B increased across this boundary from ≈0.2 to ≈0.4 nanotesla, and B remained near 0.4 nanotesla until at least day 270, 2012. The strong magnetic fields were associated with unusually low counting rates of >0.5 mega-electron volt per nuclear particle. The direction of B did not change significantly across any of the five boundary crossings; it was very uniform and very close to the spiral magnetic field direction, which was observed throughout the heliosheath. The observations indicate that V1 entered a region of the heliosheath (the heliosheath depletion region), rather than the interstellar medium.

7.
Science ; 341(6142): 150-3, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23811227

ABSTRACT

On 25 August 2012, Voyager 1 was at 122 astronomical units when the steady intensity of low-energy ions it had observed for the previous 6 years suddenly dropped for a third time and soon completely disappeared as the ions streamed away into interstellar space. Although the magnetic field observations indicate that Voyager 1 remained inside the heliosphere, the intensity of cosmic ray nuclei from outside the heliosphere abruptly increased. We report the spectra of galactic cosmic rays down to ~3 × 10(6) electron volts per nucleon, revealing H and He energy spectra with broad peaks from 10 × 10(6) to 40 × 10(6) electron volts per nucleon and an increasing galactic cosmic-ray electron intensity down to ~10 × 10(6) electron volts.

8.
Science ; 316(5826): 875-8, 2007 May 11.
Article in English | MEDLINE | ID: mdl-17495167

ABSTRACT

The orientation of the local interstellar magnetic field introduces asymmetries in the heliosphere that affect the location of heliospheric radio emissions and the streaming direction of ions from the termination shock of the solar wind. We combined observations of radio emissions and energetic particle streaming with extensive three-dimensional magnetohydrodynamic computer simulations of magnetic field draping over the heliopause to show that the plane of the local interstellar field is approximately 60 degrees to 90 degrees from the galactic plane. This finding suggests that the field orientation in the Local Interstellar Cloud differs from that of a larger-scale interstellar magnetic field thought to parallel the galactic plane.

9.
Science ; 309(5743): 2017-20, 2005 Sep 23.
Article in English | MEDLINE | ID: mdl-16179468

ABSTRACT

Voyager 1 crossed the termination shock of the supersonic flow of the solar wind on 16 December 2004 at a distance of 94.01 astronomical units from the Sun, becoming the first spacecraft to begin exploring the heliosheath, the outermost layer of the heliosphere. The shock is a steady source of low-energy protons with an energy spectrum approximately E(-1.41 +/- 0.15) from 0.5 to approximately 3.5 megaelectron volts, consistent with a weak termination shock having a solar wind velocity jump ratio r=2.6(-0.2)(+0.4). However, in contradiction to many predictions, the intensity of anomalous cosmic ray (ACR) helium did not peak at the shock, indicating that the ACR source is not in the shock region local to Voyager 1. The intensities of approximately 10-megaelectron volt electrons, ACRs, and galactic cosmic rays have steadily increased since late 2004 as the effects of solar modulation have decreased.

10.
Science ; 309(5743): 2027-9, 2005 Sep 23.
Article in English | MEDLINE | ID: mdl-16179471

ABSTRACT

Magnetic fields measured by Voyager 1 show that the spacecraft crossed or was crossed by the termination shock on about 16 December 2004 at 94.0 astronomical units. An estimate of the compression ratio of the magnetic field strength B (+/- standard error of the mean) across the shock is B2/B1 = 3.05 +/- 0.04, but ratios in the range from 2 to 4 are admissible. The average B in the heliosheath from day 1 through day 110 of 2005 was 0.136 +/- 0.035 nanoteslas, approximately 4.2 times that predicted by Parker's model for B. The magnetic field in the heliosheath from day 361 of 2004 through day 110 of 2005 was pointing away from the Sun along the Parker spiral. The probability distribution of hourly averages of B in the heliosheath is a Gaussian distribution. The cosmic ray intensity increased when B was relatively large in the heliosheath.

11.
Science ; 293(5527): 55-6, 2001 Jul 06.
Article in English | MEDLINE | ID: mdl-11441168
12.
Am Antiq ; 66(2): 333-48, 2001 Apr.
Article in English | MEDLINE | ID: mdl-20043371

ABSTRACT

Most zooarchaeologists employ some type of derived measure of skeletal element abundance in their analyses of faunal data. The minimum number of individuals (MNI) and the minimum number of animal units (MAU) are two of the most popular derived measurements, and each is based on a prior estimate of the minimum number of elements (MNE). Thus, the estimate of MNE from fragmented faunal fragments is the essential foundation for all inferences emanating from MNI and MAU estimates of skeletal element abundance. Estimating the MNE represented by a sample of faunal fragments is a complicated procedure that involves various assumptions, possible mathematical manipulations, and subjectivity. Unfortunately, the reasoning and methods underlying this procedure are unstandardized in zooarchaeology, and even worse, rarely made explicit. We review the scarce literature on this topic and identify two different approaches: the fraction summation approach and the overlap approach. We identify strengths and weaknesses in both approaches. We then present a new method that is based on using image-analysis GIS software to count overlapping fragments that have been converted to pixel images. This method maintains the strengths of the other methods while overcoming most of their weaknesses. It promises numerous powerful analytical capabilities that go far beyond the routines available in spreadsheets and databases. It also offers nearly boundless flexibility in database recoding and extremely complete information storage. Perhaps its greatest strength is that it is based on very intuitive reasoning.


Subject(s)
Archaeology/history , Archaeology/methods , Archaeology/statistics & numerical data , Bone and Bones , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/statistics & numerical data , Image Processing, Computer-Assisted/trends , Animals , Archaeology/instrumentation , Forensic Anthropology/methods , Forensic Anthropology/statistics & numerical data , History, Ancient , Humans , Image Processing, Computer-Assisted/history , Image Processing, Computer-Assisted/instrumentation
13.
Science ; 274(5286): 393-4, 1996 Oct 18.
Article in English | MEDLINE | ID: mdl-8832881

ABSTRACT

The Galileo heavy ion counter is sensitive to ions with atomic numbers Z >/= 6 and energies greater than approximately 6 MeV per nucleon. During Galileo's passage through Jupiter's inner magnetosphere, the observed composition of these heavy ions was consistent with the presence of singly ionized iogenic O, Na, and S and highly ionized solar C, O, and Ne. The solar component is absorbed more strongly by Io because its gyroradius is smaller than Io's diameter.


Subject(s)
Ions , Jupiter , Carbon/analysis , Extraterrestrial Environment , Neon/analysis , Oxygen/analysis , Sodium/analysis , Sulfur/analysis
14.
Adv Space Res ; 14(10): 589-98, 1994 Oct.
Article in English | MEDLINE | ID: mdl-11539996

ABSTRACT

We present a model for composition of heavy ions in the solar energetic particles (SEP). The SEP composition in a typical large solar particle event reflects the composition of the Sun, with adjustments due to fractionation effects which depend on the first ionization potential (FIP) of the ion and on the ratio of ionic charge to mass (Q/M). Flare-to-flare variations in composition are represented by parameters describing these fractionation effects and the distributions of these parameters are presented.


Subject(s)
Extraterrestrial Environment , Helium , Hydrogen , Models, Theoretical , Solar Activity , Cosmic Radiation , Mathematics , Nuclear Physics
15.
Science ; 246(4936): 1417-21, 1989 Dec 15.
Article in English | MEDLINE | ID: mdl-17755996

ABSTRACT

An overview of the Voyager 2 encounter with Neptune is presented, including a brief discussion of the trajectory, the planned observations, and highlights of the results described in the 11 companion papers. Neptune's blue atmosphere has storm systems reminiscent of those in Jupiter's atmosphere. An optically thin methane ice cloud exists near the 1.5-bar pressure level, and an optically thick cloud exists below 3 bars. Neptune's magnetic field is highly tilted and offset from the planet's center; it rotates with a period of 16.11 hours. Two narrow and two broad rings circle the planet; the outermost of these rings has three optically thicker arc segments. Six new moons were discovered in circular prograde orbits, all well inside Triton's retrograde orbit. Triton has a highly reflective and geologically young surface, a thin nitrogen atmosphere, and at least two active geyser-like plumes.

16.
Science ; 246(4936): 1489-94, 1989 Dec 15.
Article in English | MEDLINE | ID: mdl-17756005

ABSTRACT

The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic [>/=1 megaelectron volt (MeV)] trapped electrons and protons in the magnetosphere of Neptune. The intensities are maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet.

17.
Science ; 233(4759): 39-43, 1986 Jul 04.
Article in English | MEDLINE | ID: mdl-17812888

ABSTRACT

An overview of the Voyager 2 encounter with Uranus is presented, inclding a brief discussion of the trajectory and the planned observations as well as the highlights of the results described in the 11 companion papers.

18.
Science ; 233(4759): 93-7, 1986 Jul 04.
Article in English | MEDLINE | ID: mdl-17812896

ABSTRACT

During the encounter with Uranus, the cosmic ray system on Voyager 2 measured significant fluxes of energetic electrons and protons in the regions of the planets magnetosphere where these particles could be stably trapped. The radial distribution of electrons with energies of megaelectron volts is strongly modulated by the sweeping effects ofthe three major inner satellites Miranda, Ariel, and Umbriel. The phase space density gradient of these electrons indicates that they are diffusing radially inward from a source in the outer magnetosphere or magnetotail. Differences in the energy spectra of protons having energies of approximately 1 to 8 megaelectron volts from two different directions indicate a strong dependence on pitch angle. From the locations of the absorption signatures observed in the electron flux, a centered dipole model for the magnetic field of Uranus with a tilt of 60.1 degrees has been derived, and a rotation period of the planet of 17.4 hours has also been calculated. This model provides independent confirmaton of more precise determinations made by other Voyager experiments.

19.
Science ; 215(4532): 499-504, 1982 Jan 29.
Article in English | MEDLINE | ID: mdl-17771272

ABSTRACT

An overview of the Voyager 2 encounter with Saturn is presented, including a brief discussion of the trajectory, the planned observations, and highlights of the results described in the subsequent reports.

20.
Science ; 215(4532): 577-82, 1982 Jan 29.
Article in English | MEDLINE | ID: mdl-17771281

ABSTRACT

Results from the cosmic-ray system on Voyager 2 in Saturn's magnetosphere are presented. During the inbound pass through the outer magnetosphere, the >/= 0.43-million-electron-volt proton flux was more intense, and both the proton and electron fluxes were more variable, than previously observed. These changes are attributed to the influence on the magnetosphere of variations in the solar wind conditions. Outbound, beyond 18 Saturn radii, impulsive bursts of 0.14- to > 1.0- million-electron-volt electrons were observed. In the inner magnetosphere, the charged particle absorption signatures of Mimas, Enceladus, and Tethys are used to constrain the possible tilt and offset of Saturn's internal magnetic dipole. At approximately 3 Saturn radii, a transient decrease was observed in the electron flux which was not due to Mimas. Characteristics of this decrease suggest the existence of additional material, perhaps another satellite, in the orbit of Mimas.

SELECTION OF CITATIONS
SEARCH DETAIL
...