Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 112(2): 105-13, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24022495

ABSTRACT

Conservation policies usually focus on in situ protection of native populations, a priority that requires accurate assessment of population status. Distinction between native and introduced status can be particularly difficult (and at the same time, is most important) for species whose natural habitat has become both rare and highly fragmented. Here, we address the status of the white elm (Ulmus laevis Pallas), a European riparian tree species whose populations have been fragmented by human activity and is protected wherever it is considered native. Small populations of this species are located in Iberia, where they are unprotected because they are considered introductions due to their rarity. However, Iberia and neighbouring regions in southwestern France have been shown to support discrete glacial refuge populations of many European trees, and the possibility remains that Iberian white elms are native relicts. We used chloroplast RFLPs and nuclear microsatellites to establish the relationship between populations in Iberia and the Central European core distribution. Bayesian approaches revealed significant spatial structure across populations. Those in Iberia and southwestern France shared alleles absent from Central Europe, and showed spatial population structure within Iberia common in recognized native taxa. Iberian populations show a demographic signature of ancient population bottlenecks, while those in Central European show a signature of recent population bottlenecks. These patterns are not consistent with historical introduction of white elm to Iberia, and instead strongly support native status, arguing for immediate implementation of conservation measures for white elm populations in Spain and contiguous areas of southern France.


Subject(s)
Ulmus/genetics , Bayes Theorem , DNA, Chloroplast/genetics , Europe , Evolution, Molecular , Genetic Markers , Genetic Variation , Genetics, Population , Geography , Microsatellite Repeats , Molecular Sequence Data , Trees/genetics
2.
Mol Ecol Resour ; 8(2): 421-4, 2008 Mar.
Article in English | MEDLINE | ID: mdl-21585809

ABSTRACT

We isolated and characterized 19 polymorphic microsatellite loci in the congeneric parasitoid wasps Megastigmus stigmatizans and Megastigmus dorsalis associated with cynipid oak galls. Loci isolated from species-specific libraries showed extensive cross-amplification, resulting in a total of 15 polymorphic loci for M. stigmatizans and 13 for M. dorsalis.

3.
Mol Ecol ; 11(9): 1815-29, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12207731

ABSTRACT

Wolbachia bacteria infect approximately 20% of all insect species, and cause a range of alterations to host reproduction, including imposition of thelytoky. The incidence and phenotypic impact of Wolbachia remains to be established in many insect taxa, and considerable research effort is currently focused on its association with particular reproductive modes and the relative importance of the various pathways via which infection occurs. Gallwasps represent an attractive system for addressing these issues for two reasons. First, they show a diversity of reproductive modes (including arrhenotoky, thelytoky and cyclical parthenogenesis) in which the impact of Wolbachia infection can be examined. Second, they occupy two intimately linked trophic niches (gall-inducers and inquilines) between which there is potential for the horizontal exchange of Wolbachia infection. In the arrhenotokous gallwasp lineages screened to date (the herb-galling 'Aylacini' and the rose-galling Diplolepidini), Wolbachia infection always induces thelytoky. The impact of Wolbachia in other arrhenotokous clades, and in the cyclically parthenogenetic clades remains unknown. Here we use polymerase chain reaction (PCR) screening and sequence data for two Wolbachia genes (wsp and ftsZ) to examine the prevalence and incidence of Wolbachia infection in 64 species (a total of 609 individuals) in two further tribes: the arrhenotokous inquilines (tribe Synergini), and the cyclically parthenogenetic oak gallwasps (tribe Cynipini). We ask: (i) whether Wolbachia infection has any apparent impact on host reproduction in the two tribes and (ii) whether there is any correlation between Wolbachia infection and the apparent lack of an arrhenotokous generation in many oak gallwasp life cycles. We show: (i) that Wolbachia infection is rare in the Cynipini. Infected species show no deviation from cyclical parthenogenesis, and infection is no more common in species known only from a thelytokous generation; (ii) that there is a higher incidence of infection within the arrhenotokous inquilines, and generally in gallwasp tribes without cyclical parthenogensis; (iii) all Wolbachia-positive inquiline species are known to possess males, implying either that Wolbachia infection does not result in loss of sex in this tribe or, more probably, that (as for some rose gallwasps) Wolbachia infection leads to loss of sex in specific populations; and (iv) although we find some inquilines and gall inducers to be infected with Wolbachia having the same wsp sequence, these hosts are not members of the same gall communities, arguing against frequent horizontal transmission between these two trophic groups. We suggest that exchange may be mediated by the generalist parasitoids common in oak galls.


Subject(s)
Quercus/parasitology , Wasps/microbiology , Wolbachia/genetics , Wolbachia/physiology , Animals , Female , Genes, Bacterial , Male , Phylogeny , Wasps/classification , Wasps/physiology
4.
Heredity (Edinb) ; 87(Pt 3): 294-304, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11737276

ABSTRACT

The endosymbiont Wolbachia can be responsible for selective sweeps on mitochondrial DNA variability within species. Similar signals can also result from demographic processes, although crucially the latter affect nuclear as well as mitochondrial loci. Here we present data on Wolbachia infection status and phylogeographic patterning for a widely distributed insect host, the oak gallwasp Biorhiza pallida (Hymenoptera: Cynipidae). Two hundred and eighteen females from eight European countries were screened for Wolbachia. All individuals from Hungary, Italy, France, U.K., Ireland, Switzerland, Sweden, and northern and southern Spain were infected with a single group A strain of Wolbachia, while populations in central Spain were not infected. A mitochondrial marker (cytochrome b) shows low variation and departure from neutrality in infected populations, but greater variation and no deviation from neutrality in Wolbachia-free populations. This pattern is compatible with a Wolbachia-induced selective sweep. However, we also find parallel differences between infected and uninfected populations for nuclear markers (sequence data for ITS1 and ITS2). All markers support the existence of a deep split between populations in Spain (some free of Wolbachia), and those in the rest of Europe (all infected). Allelic variation for five allozyme loci is also consistent with the Spain-rest of Europe split. Concordant patterns for nuclear and mitochondrial markers suggest that differences in the nature and extent of genetic diversity between these two regions are best explained by differing demographic histories (perhaps associated with range expansion from Pleistocene glacial refugia), rather than a Wolbachia-associated selective sweep.


Subject(s)
Genetic Variation , Wasps/genetics , Wolbachia/physiology , Animals , Base Sequence , Cytochrome b Group/chemistry , Cytochrome b Group/genetics , DNA Primers/chemistry , DNA, Bacterial/analysis , DNA, Mitochondrial/genetics , Europe , Female , Haplotypes/genetics , Isoenzymes/metabolism , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Wasps/microbiology
5.
J Comp Physiol B ; 162(3): 284-95, 1992.
Article in English | MEDLINE | ID: mdl-1613167

ABSTRACT

This study examines the relationship between warm-up rate, body mass, metabolic rate, thermal conductance and normothermic body temperature in heterothermic mammals during arousal from torpor. Predictions based on the assumption that the energetic cost of arousal has been minimised are tested using data for 35 species. The observation that across-species warm-up rate correlates negatively with body mass is confirmed using a comparative technique which removes confounding effects due to the non-independence of species data due to shared common ancestry. Mean warm-up rate during arousal correlates negatively with basal metabolic rate and positively with the temperature difference through which the animal warms, having controlled for other factors. These results suggest that selection has operated to minimise the overall energetic cost of warm-up. In contrast, peak warm-up rate during arousal correlates positively with peak metabolic rate during arousal, and negatively with thermal conductance, when body mass has been taken into account. These results suggest that peak warm-up rate is more sensitive to the fundamental processes of heat generation and loss. Although heterothermic marsupials have lower normothermic body temperatures and basal metabolic rates, marsupials and heterothermic eutherian mammals do not differ systematically in warm-up rate. Pre-flight warm-up rates in one group of endothermic insects, the bees, are significantly higher than predictions based on rates of arousal of a mammal of the same body mass.


Subject(s)
Body Temperature Regulation/physiology , Mammals/physiology , Animals , Arousal/physiology , Body Constitution , Climate , Energy Metabolism/physiology , Insecta/physiology , Mammals/classification , Marsupialia/physiology , Models, Biological , Phylogeny , Species Specificity
6.
Oecologia ; 77(1): 56-63, 1988 Oct.
Article in English | MEDLINE | ID: mdl-28312315

ABSTRACT

1. The foraging activities of the papilionid butterflies Ornithoptera priamus poseidon and Papilio ulysses, and the solitary bee Amegilla sapiens (Apoidea, Anthophoridae) on the shrub Stachytarpheta mutabilis were studied in highland Papua New Guinea. 2. The insects' activity patterns were analysed at three sites with differing diurnal microclimate variation. O. priamus and A. sapiens foraged in the morning (after a period of basking and wing-whirring) and late afternoon when temperatures were well below daily maxima, whereas P. ulysses showed foraging peaks during the hottest part of the day. 3. Site choice by all 3 species appeared to be determined primarily by temperature, but within the limits imposed by temperature, nectar supplies probably determined which site was visited. 4. P. ulysses showed interspersed foraging and courtship behaviour, and no behavioural switching was observed for this species. At high temperatures, both O. priamus and A. sapiens ceased foraging and showed territorial and courtship behaviour. This behavioural change allowed avoidance of heat stress, and occurred even when nectar supplies were maintained at high levels. 5. Thermal effects on behavioural switching in these insects are compared with related phenomena in other bees and butterflies.

SELECTION OF CITATIONS
SEARCH DETAIL
...