Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(11): e2213910120, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36877843

ABSTRACT

The 2019 to 2020 Australian summer wildfires injected an amount of organic gases and particles into the stratosphere unprecedented in the satellite record since 2002, causing large unexpected changes in HCl and ClONO2. These fires provided a novel opportunity to evaluate heterogeneous reactions on organic aerosols in the context of stratospheric chlorine and ozone depletion chemistry. It has long been known that heterogeneous chlorine (Cl) activation occurs on the polar stratospheric clouds (PSCs; liquid and solid particles containing water, sulfuric acid, and in some cases nitric acid) that are found in the stratosphere, but these are only effective for ozone depletion chemistry at temperatures below about 195 K (i.e., largely in the polar regions during winter). Here, we develop an approach to quantitatively assess atmospheric evidence for these reactions using satellite data for both the polar (65 to 90°S) and the midlatitude (40 to 55°S) regions. We show that heterogeneous reactions apparently even happened at temperatures at 220 K during austral autumn on the organic aerosols present in 2020 in both regions, in contrast to earlier years. Further, increased variability in HCl was also found after the wildfires, suggesting diverse chemical properties among the 2020 aerosols. We also confirm the expectation based upon laboratory studies that heterogeneous Cl activation has a strong dependence upon water vapor partial pressure and hence atmospheric altitude, becoming much faster close to the tropopause. Our analysis improves the understanding of heterogeneous reactions that are important for stratospheric ozone chemistry under both background and wildfire conditions.

2.
Nature ; 615(7951): 259-264, 2023 03.
Article in English | MEDLINE | ID: mdl-36890371

ABSTRACT

Remarkable perturbations in the stratospheric abundances of chlorine species and ozone were observed over Southern Hemisphere mid-latitudes following the 2020 Australian wildfires1,2. These changes in atmospheric chemical composition suggest that wildfire aerosols affect stratospheric chlorine and ozone depletion chemistry. Here we propose that wildfire aerosol containing a mixture of oxidized organics and sulfate3-7 increases hydrochloric acid solubility8-11 and associated heterogeneous reaction rates, activating reactive chlorine species and enhancing ozone loss rates at relatively warm stratospheric temperatures. We test our hypothesis by comparing atmospheric observations to model simulations that include the proposed mechanism. Modelled changes in 2020 hydrochloric acid, chlorine nitrate and hypochlorous acid abundances are in good agreement with observations1,2. Our results indicate that wildfire aerosol chemistry, although not accounting for the record duration of the 2020 Antarctic ozone hole, does yield an increase in its area and a 3-5% depletion of southern mid-latitude total column ozone. These findings increase concern2,12,13 that more frequent and intense wildfires could delay ozone recovery in a warming world.


Subject(s)
Aerosols , Chlorine , Ozone Depletion , Ozone , Wildfires , Aerosols/adverse effects , Aerosols/analysis , Aerosols/chemistry , Australia , Chlorine/analysis , Chlorine/chemistry , Hydrochloric Acid/chemistry , Ozone/analysis , Ozone/chemistry , Global Warming
3.
Proc Natl Acad Sci U S A ; 119(10): e2117325119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238658

ABSTRACT

SignificanceLarge wildfires have been observed to inject smoke into the stratosphere, raising questions about their potential to affect the stratospheric ozone layer that protects life on Earth from biologically damaging ultraviolet radiation. Multiple observations of aerosol and NO2 concentrations from three independent satellite instruments are used here together with model calculations to identify decreases in stratospheric NO2 concentrations following major Australian 2019 through 2020 wildfires. The data confirm that important chemistry did occur on the smoke particle surfaces. The observed behavior in NO2 with increasing particle concentrations is a marker for surface chemistry that contributes to midlatitude ozone depletion. The results indicate that increasing wildfire activity in a warming world may slow the recovery of the ozone layer.


Subject(s)
Altitude , Particulate Matter/chemistry , Smoke/analysis , Stratospheric Ozone/chemistry , Wildfires , Australia
4.
Nat Commun ; 11(1): 1380, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32184388

ABSTRACT

Chlorofluorocarbon (CFC) banks from uses such as air conditioners or foams can be emitted after global production stops. Recent reports of unexpected emissions of CFC-11 raise the need to better quantify releases from these banks, and associated impacts on ozone depletion and climate change. Here we develop a Bayesian probabilistic model for CFC-11, 12, and 113 banks and their emissions, incorporating the broadest range of constraints to date. We find that bank sizes of CFC-11 and CFC-12 are larger than recent international scientific assessments suggested, and can account for much of current estimated CFC-11 and 12 emissions (with the exception of increased CFC-11 emissions after 2012). Left unrecovered, these CFC banks could delay Antarctic ozone hole recovery by about six years and contribute 9 billion metric tonnes of equivalent CO2 emission. Derived CFC-113 emissions are subject to uncertainty, but are much larger than expected, raising questions about its sources.

5.
Atmos Chem Phys ; 19(2): 921-940, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32793293

ABSTRACT

Climate models consistently predict an acceleration of the Brewer-Dobson circulation (BDC) due to climate change in the 21st century. However, the strength of this acceleration varies considerably among individual models, which constitutes a notable source of uncertainty for future climate projections. To shed more light upon the magnitude of this uncertainty and on its causes, we analyze the stratospheric mean age of air (AoA) of 10 climate projection simulations from the Chemistry Climate Model Initiative phase 1 (CCMI-I), covering the period between 1960 and 2100. In agreement with previous multi-model studies, we find a large model spread in the magnitude of the AoA trend over the simulation period. Differences between future and past AoA are found to be predominantly due to differences in mixing (reduced aging by mixing and recirculation) rather than differences in residual mean transport. We furthermore analyze the mixing efficiency, a measure of the relative strength of mixing for given residual mean transport, which was previously hypothesized to be a model constant. Here, the mixing efficiency is found to vary not only across models, but also over time in all models. Changes in mixing efficiency are shown to be closely related to changes in AoA and quantified to roughly contribute 10% to the long-term AoA decrease over the 21st century. Additionally, mixing efficiency variations are shown to considerably enhance model spread in AoA changes. To understand these mixing efficiency variations, we also present a consistent dynamical framework based on diffusive closure, which highlights the role of basic state potential vorticity gradients in controlling mixing efficiency and therefore aging by mixing.

6.
Atmos Chem Phys ; 18(21): 16155-16172, 2018 Nov.
Article in English | MEDLINE | ID: mdl-32742283

ABSTRACT

Previous multi-model intercomparisons have shown that chemistry-climate models exhibit significant biases in tropospheric ozone compared with observations. We investigate annual-mean tropospheric column ozone in 15 models participating in the SPARC/IGAC (Stratosphere-troposphere Processes and their Role in Climate/International Global Atmospheric Chemistry) Chemistry-Climate Model Initiative (CCMI). These models exhibit a positive bias, on average, of up to 40-50% in the Northern Hemisphere compared with observations derived from the Ozone Monitoring Instrument and Microwave Limb Sounder (OMI/MLS), and a negative bias of up to ~30% in the Southern Hemisphere. SOCOLv3.0 (version 3 of the Solar-Climate Ozone Links CCM), which participated in CCMI, simulates global-mean tropospheric ozone columns of 40.2 DU - approximately 33% larger than the CCMI multi-model mean. Here we introduce an updated version of SOCOLv3.0, "SOCOLv3.1", which includes an improved treatment of ozone sink processes, and results in a reduction in the tropospheric column ozone bias of up to 8 DU, mostly due to the inclusion of N2O5 hydrolysis on tropospheric aerosols. As a result of these developments, tropospheric column ozone amounts simulated by SOCOLv3.1 are comparable with several other CCMI models. We apply Gaussian process emulation and sensitivity analysis to understand the remaining ozone bias in SOCOLv3.1. This shows that ozone precursors (nitrogen oxides (NOx), carbon monoxide, methane and other volatile organic compounds) are responsible for more than 90% of the variance in tropospheric ozone. However, it may not be the emissions inventories themselves that result in the bias, but how the emissions are handled in SOCOLv3.1, and we discuss this in the wider context of the other CCMI models. Given that the emissions data set to be used for phase 6 of the Coupled Model Intercomparison Project includes approximately 20% more NOx than the data set used for CCMI, further work is urgently needed to address the challenges of simulating sub-grid processes of importance to tropospheric ozone in the current generation of chemistry-climate models.

7.
Atmos Chem Phys ; 18(15): 11277-11287, 2018 Aug.
Article in English | MEDLINE | ID: mdl-32742282

ABSTRACT

Major stratospheric sudden warmings (SSWs) are the largest instance of wintertime variability in the Arctic stratosphere. Due to their relevance for the troposphere-stratosphere system, several previous studies have focused on their potential response to anthropogenic forcings. However, a wide range of results have been reported, from a future increase in the frequency of SSWs to a decrease. Several factors might explain these contradictory results, notably the use of different metrics for the identification of SSWs, and the impact of large climatological biases in single-model studies. Here we revisit the question of future SSWs changes, using an identical set of metrics applied consistently across 12 different models participating in the Chemistry Climate Model Initiative. From analyzing future integrations we find no statistically significant change in the frequency of SSWs over the 21st century, irrespective of the metric used for the identification of SSWs. Changes in other SSWs characteristics, such as their duration and the tropospheric forcing, are also assessed: again, we find no evidence of future changes over the 21st century.

SELECTION OF CITATIONS
SEARCH DETAIL
...