Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Mater Horiz ; 11(2): 545-553, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37982315

ABSTRACT

This study provides the first experimental polarized intermolecular and intramolecular optical absorption components of field-induced polarons in regioregular poly(3-hexylthiophene-2,5-diyl), rr-P3HT, a polymer semiconductor. Highly aligned rr-P3HT thin films were prepared by a high temperature shear-alignment process that orients polymer backbones along the shearing direction. rr-P3HT in-plane molecular orientation was measured by electron diffraction, and out-of-plane orientation was measured through series of synchrotron X-ray scattering techniques. Then, with molecular orientation quantified, polarized charge modulation spectroscopy was used to probe mid-IR polaron absorption in the ℏω = 0.075 - 0.75 eV range and unambiguously assign intermolecular and intramolecular optical absorption components of hole polarons in rr-P3HT. This data represents the first experimental quantification of these polarized components and allowed long-standing theoretical predictions to be compared to experimental results. The experimental data is discrepant with predictions of polaron absorption based on an adiabatic framework that works under the Born-Oppenheimer approximation, but the data is entirely consistent with a more recent nonadiabatic treatment of absorption based on a modified Holstein Hamiltonian. This nonadiabatic treatment was used to show that both intermolecular and intramolecular polaron coherence break down at length scales significantly smaller than estimated structural coherence in either direction. This strongly suggests that polaron delocalization is fundamentally limited by energetic disorder in rr-P3HT.

2.
ACS Appl Mater Interfaces ; 15(46): 53913-53923, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37955400

ABSTRACT

Solution shearing, a meniscus-guided coating process, can create large-area metal-organic framework (MOF) thin films rapidly, which can lead to the formation of uniform membranes for separations or thin films for sensing and catalysis applications. Although previous work has shown that solution shearing can render MOF thin films, examples have been limited to a few prototypical systems, such as HKUST-1, Cu-HHTP, and UiO-66. Here, we expand on the applicability of solution shearing by making thin films of NU-901, a zirconium-based MOF. We study how the NU-901 thin film properties (i.e., crystallinity, surface coverage, and thickness) can be controlled as a function of substrate temperature and linker concentration. High fractional surface coverage of small-area (∼1 cm2) NU-901 thin films (0.88 ± 0.06) is achieved on a glass substrate for all conditions after one blade pass, while a low to moderate fractional surface coverage (0.73 ± 0.18) is obtained for large-area (∼5 cm2) NU-901 thin films. The crystallinity of NU-901 crystals increases with temperature and decreases with linker concentration. On the other hand, the adjusted thickness of NU-901 thin films increases with both increasing temperature and linker concentration. We also extend the solution shearing technique to synthesize MOF-525 thin films on a transparent conductive oxide that are useful for electrocatalysis. We show that Fe-metalated MOF-525 films can reduce CO2 to CO, which has implications for CO2 capture and utilization. The demonstration of thin film formation of NU-901 and MOF-525 using solution shearing on a wide range of substrates will be highly useful for implementing these MOFs in sensing and catalytic applications.

3.
J Appl Crystallogr ; 56(Pt 5): 1480-1484, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37791352

ABSTRACT

The general-purpose powder diffractometer beamline (BL2-1) at the Stanford Synchrotron Radiation Lightsource (SSRL) is described. The evolution of design and performance of BL2-1 are presented, in addition to current operating specifications, applications and measurement capabilities. Recent developments involve a robotic sample changer enabling high-throughput X-ray diffraction measurements, applicable to mail-in and remote operations. In situ and operando capabilities to measure samples with different form factors (e.g. capillary, flat plate or thin film, and transmission) and under variable experimental conditions are discussed. Several example datasets and accompanying Rietveld refinements are presented.

4.
J Synchrotron Radiat ; 30(Pt 5): 917-922, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37594864

ABSTRACT

In situ techniques are essential to understanding the behavior of electrocatalysts under operating conditions. When employed, in situ synchrotron grazing-incidence X-ray diffraction (GI-XRD) can provide time-resolved structural information of materials formed at the electrode surface. In situ cells, however, often require epoxy resins to secure electrodes, do not enable electrolyte flow, or exhibit limited chemical compatibility, hindering the study of non-aqueous electrochemical systems. Here, a versatile electrochemical cell for air-free in situ synchrotron GI-XRD during non-aqueous Li-mediated electrochemical N2 reduction (Li-N2R) has been designed. This cell not only fulfills the stringent material requirements necessary to study this system but is also readily extendable to other electrochemical systems. Under conditions relevant to non-aqueous Li-N2R, the formation of Li metal, LiOH and Li2O as well as a peak consistent with the α-phase of Li3N was observed, thus demonstrating the functionality of this cell toward developing a mechanistic understanding of complicated electrochemical systems.

5.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 5): 469-473, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37151825

ABSTRACT

The resurgence of inter-est in hydrogen-related technologies has stimulated new studies aimed at advancing lesser-developed water-splitting processes, such as solar thermochemical hydrogen production (STCH). Progress in STCH has been largely hindered by a lack of new materials able to efficiently split water at a rate comparable to ceria under identical experimental conditions. BaCe0.25Mn0.75O3 (BCM) recently demonstrated enhanced hydrogen production over ceria and has the potential to further our understanding of two-step thermochemical cycles. A significant feature of the 12R hexa-gonal perovskite structure of BCM is the tendency to, in part, form a 6H polytype at high temperatures and reducing environments (i.e., during the first step of the thermochemical cycle), which may serve to mitigate degradation of the complex oxide. An analogous compound, namely BaNb0.25Mn0.75O3 (BNM) with a 12R structure was synthesized and displays nearly complete conversion to the 6H structure under identical reaction conditions as BCM. The structure of the BNM-6H polytype was determined from Rietveld refinement of synchrotron powder X-ray diffraction data and is presented within the context of the previously established BCM-6H structure.

6.
J Am Chem Soc ; 144(38): 17576-17587, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36102706

ABSTRACT

Flower-like polyacrylonitrile (PAN) particles have shown promising performance for numerous applications, including sensors, catalysis, and energy storage. However, the detailed formation process of these unique structures during polymerization has not been investigated. Here, we elucidate the formation process of flower-like PAN particles through a series of in situ and ex situ experiments. We have the following key findings. First, lamellar petals within the flower-like particles were predominantly orthorhombic PAN crystals. Second, branching of the lamellae during the particle formation arose from PAN's fast nucleation and growth on pre-existing PAN crystals, which was driven by the poor solubility of PAN in the reaction solvent. Third, the particles were formed to maintain a constant center-to-center distance during the reaction. The separation distance was attributed to strong electrostatic repulsion, which resulted in the final particles' spherical shape and uniform size. Lastly, we employed the understanding of the formation mechanism to tune the PAN particles' morphology using several experimental parameters including incorporating comonomers, changing temperature, adding nucleation seeds, and adjusting the monomer concentration. These findings provide important insights into the bottom-up design of advanced nanostructured PAN-based materials and controlled polymer nanostructure self-assemblies.


Subject(s)
Acrylic Resins , Polymers , Particle Size , Polymers/chemistry , Solvents
7.
J Am Chem Soc ; 144(39): 17999-18008, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36130080

ABSTRACT

γ-Graphyne is the most symmetric sp2/sp1 allotrope of carbon, which can be viewed as graphene uniformly expanded through the insertion of two-carbon acetylenic units between all the aromatic rings. To date, synthesis of bulk γ-graphyne has remained a challenge. We here report the synthesis of multilayer γ-graphyne through crystallization-assisted irreversible cross-coupling polymerization. A comprehensive characterization of this new carbon phase is described, including synchrotron powder X-ray diffraction, electron diffraction, lateral force microscopy, Raman spectroscopy, infrared spectroscopy, and cyclic voltammetry. Experiments indicate that γ-graphyne is a 0.48 eV band gap semiconductor, with a hexagonal a-axis spacing of 6.88 Å and an interlayer spacing of 3.48 Å, which is consistent with theoretical predictions. The observed crystal structure has an aperiodic sheet stacking. The material is thermally stable up to 240 °C but undergoes transformation at higher temperatures. While conventional 2D polymerization and reticular chemistry rely on error correction through reversibility, we demonstrate that a periodic covalent lattice can be synthesized under purely kinetic control. The reported methodology is scalable and inspires extension to other allotropes of the graphyne family.

8.
ACS Appl Mater Interfaces ; 14(24): 27791-27798, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35670721

ABSTRACT

The role of strain in metal halide perovskite (MHP) solar cells is still under investigation, showing both beneficial and detrimental effects on the device performance and stability. One crucial component to elucidating the impact of strain in the MHP absorber is a robust method of quantifying the amount of strain in the material. Here, we present a parametric refinement approach based on grazing incidence wide-angle X-ray scattering and demonstrate its use on quantifying strain during thermal annealing and subsequent cooling as a function of substrate and processing route. We use the analysis to reveal the impact of the cubic-to-tetragonal phase transition during cooling on the material's strain and discuss texture formation as a potential strain-relief mechanism. Thereby we present both a robust approach to quantify strain in MHPs and potential mechanisms to control strain in the film, opening the path for further investigations of strain in MHPs.

9.
Rev Sci Instrum ; 93(4): 043702, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35489885

ABSTRACT

Laser powder bed fusion (LPBF) is a highly dynamic multi-physics process used for the additive manufacturing (AM) of metal components. Improving process understanding and validating predictive computational models require high-fidelity diagnostics capable of capturing data in challenging environments. Synchrotron x-ray techniques play a vital role in the validation process as they are the only in situ diagnostic capable of imaging sub-surface melt pool dynamics and microstructure evolution during LPBF-AM. In this article, a laboratory scale system designed to mimic LPBF process conditions while operating at a synchrotron facility is described. The system is implemented with process accurate atmospheric conditions, including an air knife for active vapor plume removal. Significantly, the chamber also incorporates a diagnostic sensor suite that monitors emitted optical, acoustic, and electronic signals during laser processing with coincident x-ray imaging. The addition of the sensor suite enables validation of these industrially compatible single point sensors by detecting pore formation and spatter events and directly correlating the events with changes in the detected signal. Experiments in the Ti-6Al-4V alloy performed at the Stanford Synchrotron Radiation Lightsource using the system are detailed with sufficient sampling rates to probe melt pool dynamics. X-ray imaging captures melt pool dynamics at frame rates of 20 kHz with a 2 µm pixel resolution, and the coincident diagnostic sensor data are recorded at 470 kHz. This work shows that the current system enables the in situ detection of defects during the LPBF process and permits direct correlation of diagnostic signatures at the exact time of defect formation.


Subject(s)
Lasers , Synchrotrons , Powders , Radiography , X-Rays
10.
Inorg Chem ; 61(16): 6128-6137, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35404603

ABSTRACT

The resurgence of interest in a hydrogen economy and the development of hydrogen-related technologies has initiated numerous research and development efforts aimed at making the generation, storage, and transportation of hydrogen more efficient and affordable. Solar thermochemical hydrogen production (STCH) is a process that potentially exhibits numerous benefits such as high reaction efficiencies, tunable thermodynamics, and continued performance over extended cycling. Although CeO2 has been the de facto standard STCH material for many years, more recently 12R-Ba4CeMn3O12 (BCM) has demonstrated enhanced hydrogen production at intermediate H2/H2O conditions compared to CeO2, making it a contender for large-scale hydrogen production. However, the thermo-reduction stability of 12R-BCM dictates the oxygen partial pressure (pO2) and temperature conditions optimal for cycling. In this study, we identify the formation of a 6H-BCM polytype at high temperature and reducing conditions, experimentally and computationally, as a mechanism and pathway for 12R-BCM decomposition. 12R-BCM was synthesized with high purity and then controllably reduced using thermogravimetric analysis (TGA). Synchrotron X-ray diffraction (XRD) data is used to identify the formation of a 6H-Ba3Ce0.75Mn2.25O9 (6H-BCM) polytype that is formed at 1350 °C under strongly reducing pO2. Density functional theory (DFT) total energy and defect calculations show a window of thermodynamic stability for the 6H-polytype consistent with the XRD results. These data provide the first evidence of the 6H-BCM polytype and could provide a mechanistic explanation for the superior water-splitting behaviors of 12R-BCM.

11.
J Am Chem Soc ; 144(13): 5739-5744, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35315649

ABSTRACT

The electrochemical nitrate reduction reaction (NO3RR) on titanium introduces significant surface reconstruction and forms titanium hydride (TiHx, 0 < x ≤ 2). With ex situ grazing-incidence X-ray diffraction (GIXRD) and X-ray absorption spectroscopy (XAS), we demonstrated near-surface TiH2 enrichment with increasing NO3RR applied potential and duration. This quantitative relationship facilitated electrochemical treatment of Ti to form TiH2/Ti electrodes for use in NO3RR, thereby decoupling hydride formation from NO3RR performance. A wide range of NO3RR activity and selectivity on TiH2/Ti electrodes between -0.4 and -1.0 VRHE was observed and analyzed with density functional theory (DFT) calculations on TiH2(111). This work underscores the importance of relating NO3RR performance with near-surface electrode structure to advance catalyst design and operation.


Subject(s)
Nitrates , Titanium , Electrodes , Nitrates/chemistry , Oxidation-Reduction , Titanium/chemistry , X-Rays
12.
JACS Au ; 2(2): 453-462, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35252994

ABSTRACT

Synthesis of porous, covalent crystals such as zeolites and metal-organic frameworks (MOFs) cannot be described adequately using existing crystallization theories. Even with the development of state-of-the-art experimental and computational tools, the identification of primary mechanisms of nucleation and growth of MOFs remains elusive. Here, using time-resolved in-situ X-ray scattering coupled with a six-parameter microkinetic model consisting of ∼1 billion reactions and up to ∼100 000 metal nodes, we identify autocatalysis and oriented attachment as previously unrecognized mechanisms of nucleation and growth of the MOF UiO-66. The secondary building unit (SBU) formation follows an autocatalytic initiation reaction driven by a self-templating mechanism. The induction time of MOF nucleation is determined by the relative rate of SBU attachment (chain extension) and the initiation reaction, whereas the MOF growth is primarily driven by the oriented attachment of reactive MOF crystals. The average size and polydispersity of MOFs are controlled by surface stabilization. Finally, the microkinetic model developed here is generalizable to different MOFs and other multicomponent systems.

13.
Science ; 375(6576): 71-76, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34822309

ABSTRACT

The performance of three-dimensional (3D) organic-inorganic halide perovskite solar cells (PSCs) can be enhanced through surface treatment with 2D layered perovskites that have efficient charge transport. We maximized hole transport across the layers of a metastable Dion-Jacobson (DJ) 2D perovskite that tuned the orientational arrangements of asymmetric bulky organic molecules. The reduced energy barrier for hole transport increased out-of-plane transport rates by a factor of 4 to 5, and the power conversion efficiency (PCE) for the 2D PSC was 4.9%. With the metastable DJ 2D surface layer, the PCE of three common 3D PSCs was enhanced by approximately 12 to 16% and could reach approximately 24.7%. For a triple-cation­mixed-halide PSC, 90% of the initial PCE was retained after 1000 hours of 1-sun operation at ~40°C in nitrogen.

14.
J Appl Crystallogr ; 54(Pt 6): 1799-1810, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34963768

ABSTRACT

A key step in the analysis of powder X-ray diffraction (PXRD) data is the accurate determination of unit-cell lattice parameters. This step often requires significant human intervention and is a bottleneck that hinders efforts towards automated analysis. This work develops a series of one-dimensional convolutional neural networks (1D-CNNs) trained to provide lattice parameter estimates for each crystal system. A mean absolute percentage error of approximately 10% is achieved for each crystal system, which corresponds to a 100- to 1000-fold reduction in lattice parameter search space volume. The models learn from nearly one million crystal structures contained within the Inorganic Crystal Structure Database and the Cambridge Structural Database and, due to the nature of these two complimentary databases, the models generalize well across chemistries. A key component of this work is a systematic analysis of the effect of different realistic experimental non-idealities on model performance. It is found that the addition of impurity phases, baseline noise and peak broadening present the greatest challenges to learning, while zero-offset error and random intensity modulations have little effect. However, appropriate data modification schemes can be used to bolster model performance and yield reasonable predictions, even for data which simulate realistic experimental non-idealities. In order to obtain accurate results, a new approach is introduced which uses the initial machine learning estimates with existing iterative whole-pattern refinement schemes to tackle automated unit-cell solution.

15.
Inorg Chem ; 59(18): 13364-13370, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32880451

ABSTRACT

Hybrid perovskites are a promising class of materials for a range of optoelectronic applications. Many material properties are dictated by the details of the synthetic process, yet a mechanistic understanding is lacking for the majority of these materials. We have studied the formation of methylammonium lead iodide films derived from a lead chloride precursor to understand both the casting solution chemistry and its influence on the final, largely chlorine-free, film. Using solution-phase extended X-ray absorption spectroscopy, we observe a halide exchange with the primary solution plumbate species identified as PbI2.5Cl0.33. The mixed halide plumbate solution species leads to formation of the crystalline intermediate phase of (CH3NH3)2PbI3Cl. Using in situ synchrotron X-ray diffraction, we show that compositional control of the casting solution can control the annealing kinetics of film formation. Our study demonstrates the importance of solution-phase chemistry and its impact on lead halide perovskite synthesis.

16.
Sci Rep ; 10(1): 1981, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32029753

ABSTRACT

Laser powder bed fusion (LPBF) is a method of additive manufacturing characterized by the rapid scanning of a high powered laser over a thin bed of metallic powder to create a single layer, which may then be built upon to form larger structures. Much of the melting, resolidification, and subsequent cooling take place at much higher rates and with much higher thermal gradients than in traditional metallurgical processes, with much of this occurring below the surface. We have used in situ high speed X-ray diffraction to extract subsurface cooling rates following resolidification from the melt and above the ß-transus in titanium alloy Ti-6Al-4V. We observe an inverse relationship with laser power and bulk cooling rates. The measured cooling rates are seen to correlate to the level of residual strain borne by the minority ß-Ti phase with increased strain at slower cooling rates. The α-Ti phase shows a lattice contraction which is invariant with cooling rate. We also observe a broadening of the diffraction peaks which is greater for the ß-Ti phase at slower cooling rates and a change in the relative phase fraction following LPBF. These results provide a direct measure of the subsurface thermal history and demonstrate its importance to the ultimate quality of additively manufactured materials.

17.
Proc Natl Acad Sci U S A ; 116(48): 23915-23922, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31723041

ABSTRACT

Electrochemical reduction of CO2 to useful chemicals has been actively pursued for closing the carbon cycle and preventing further deterioration of the environment/climate. Since CO2 reduction reaction (CO2RR) at a cathode is always paired with the oxygen evolution reaction (OER) at an anode, the overall efficiency of electrical energy to chemical fuel conversion must consider the large energy barrier and sluggish kinetics of OER, especially in widely used electrolytes, such as the pH-neutral CO2-saturated 0.5 M KHCO3 OER in such electrolytes mostly relies on noble metal (Ir- and Ru-based) electrocatalysts in the anode. Here, we discover that by anodizing a metallic Ni-Fe composite foam under a harsh condition (in a low-concentration 0.1 M KHCO3 solution at 85 °C under a high-current ∼250 mA/cm2), OER on the NiFe foam is accompanied by anodic etching, and the surface layer evolves into a nickel-iron hydroxide carbonate (NiFe-HC) material composed of porous, poorly crystalline flakes of flower-like NiFe layer-double hydroxide (LDH) intercalated with carbonate anions. The resulting NiFe-HC electrode in CO2-saturated 0.5 M KHCO3 exhibited OER activity superior to IrO2, with an overpotential of 450 and 590 mV to reach 10 and 250 mA/cm2, respectively, and high stability for >120 h without decay. We paired NiFe-HC with a CO2RR catalyst of cobalt phthalocyanine/carbon nanotube (CoPc/CNT) in a CO2 electrolyzer, achieving selective cathodic conversion of CO2 to CO with >97% Faradaic efficiency and simultaneous anodic water oxidation to O2 The device showed a low cell voltage of 2.13 V and high electricity-to-chemical fuel efficiency of 59% at a current density of 10 mA/cm2.

18.
Nat Commun ; 10(1): 1987, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31040270

ABSTRACT

Laser powder bed fusion additive manufacturing is an emerging 3D printing technique for the fabrication of advanced metal components. Widespread adoption of it and similar additive technologies is hampered by poor understanding of laser-metal interactions under such extreme thermal regimes. Here, we elucidate the mechanism of pore formation and liquid-solid interface dynamics during typical laser powder bed fusion conditions using in situ X-ray imaging and multi-physics simulations. Pores are revealed to form during changes in laser scan velocity due to the rapid formation then collapse of deep keyhole depressions in the surface which traps inert shielding gas in the solidifying metal. We develop a universal mitigation strategy which eliminates this pore formation process and improves the geometric quality of melt tracks. Our results provide insight into the physics of laser-metal interaction and demonstrate the potential for science-based approaches to improve confidence in components produced by laser powder bed fusion.

19.
Nat Mater ; 18(3): 256-265, 2019 03.
Article in English | MEDLINE | ID: mdl-30718861

ABSTRACT

Reversible high-voltage redox chemistry is an essential component of many electrochemical technologies, from (electro)catalysts to lithium-ion batteries. Oxygen-anion redox has garnered intense interest for such applications, particularly lithium-ion batteries, as it offers substantial redox capacity at more than 4 V versus Li/Li+ in a variety of oxide materials. However, oxidation of oxygen is almost universally correlated with irreversible local structural transformations, voltage hysteresis and voltage fade, which currently preclude its widespread use. By comprehensively studying the Li2-xIr1-ySnyO3 model system, which exhibits tunable oxidation state and structural evolution with y upon cycling, we reveal that this structure-redox coupling arises from the local stabilization of short approximately 1.8 Å metal-oxygen π bonds and approximately 1.4 Å O-O dimers during oxygen redox, which occurs in Li2-xIr1-ySnyO3 through ligand-to-metal charge transfer. Crucially, formation of these oxidized oxygen species necessitates the decoordination of oxygen to a single covalent bonding partner through formation of vacancies at neighbouring cation sites, driving cation disorder. These insights establish a point-defect explanation for why anion redox often occurs alongside local structural disordering and voltage hysteresis during cycling. Our findings offer an explanation for the unique electrochemical properties of lithium-rich layered oxides, with implications generally for the design of materials employing oxygen redox chemistry.

20.
Nat Commun ; 9(1): 3458, 2018 08 27.
Article in English | MEDLINE | ID: mdl-30150720

ABSTRACT

Understanding the formation chemistry of metal halide perovskites is key to optimizing processing conditions and realizing enhanced optoelectronic properties. Here, we reveal the structure of the crystalline precursor in the formation of methylammonium lead iodide (MAPbI3) from the single-step deposition of lead chloride and three equivalents of methylammonium iodide (PbCl2 + 3MAI) (MA = CH3NH3). The as-spun film consists of crystalline MA2PbI3Cl, which is composed of one-dimensional chains of lead halide octahedra, coexisting with disordered MACl. We show that the transformation of precursor into perovskite is not favored in the presence of MACl, and thus the gradual evaporation of MACl acts as a self-regulating mechanism to slow the conversion. We propose the stable precursor phase enables dense film coverage and the slow transformation may lead to improved crystal quality. This enhanced chemical understanding is paramount for the rational control of film deposition and the fabrication of superior optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...