Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Immunol ; 25(5): 755-763, 2024 May.
Article in English | MEDLINE | ID: mdl-38641718

ABSTRACT

T cell infiltration into tumors is a favorable prognostic feature, but most solid tumors lack productive T cell responses. Mechanisms that coordinate T cell exclusion are incompletely understood. Here we identify hepatocyte activation via interleukin-6/STAT3 and secretion of serum amyloid A (SAA) proteins 1 and 2 as important regulators of T cell surveillance of extrahepatic tumors. Loss of STAT3 in hepatocytes or SAA remodeled the tumor microenvironment with infiltration by CD8+ T cells, while interleukin-6 overexpression in hepatocytes and SAA signaling via Toll-like receptor 2 reduced the number of intratumoral dendritic cells and, in doing so, inhibited T cell tumor infiltration. Genetic ablation of SAA enhanced survival after tumor resection in a T cell-dependent manner. Likewise, in individuals with pancreatic ductal adenocarcinoma, long-term survivors after surgery demonstrated lower serum SAA levels than short-term survivors. Taken together, these data define a fundamental link between liver and tumor immunobiology wherein hepatocytes govern productive T cell surveillance in cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Hepatocytes , Interleukin-6 , STAT3 Transcription Factor , Serum Amyloid A Protein , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Hepatocytes/metabolism , Hepatocytes/immunology , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Tumor Microenvironment/immunology , Mice, Inbred C57BL , Mice, Knockout , Tumor Escape , Dendritic Cells/immunology , Dendritic Cells/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Signal Transduction , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Cell Line, Tumor
2.
Cell Rep Med ; 5(2): 101397, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38307029

ABSTRACT

Microbes are an integral component of the tumor microenvironment. However, determinants of microbial presence remain ill-defined. Here, using spatial-profiling technologies, we show that bacterial and immune cell heterogeneity are spatially coupled. Mouse models of pancreatic cancer recapitulate the immune-microbial spatial coupling seen in humans. Distinct intra-tumoral niches are defined by T cells, with T cell-enriched and T cell-poor regions displaying unique bacterial communities that are associated with immunologically active and quiescent phenotypes, respectively, but are independent of the gut microbiome. Depletion of intra-tumoral bacteria slows tumor growth in T cell-poor tumors and alters the phenotype and presence of myeloid and B cells in T cell-enriched tumors but does not affect T cell infiltration. In contrast, T cell depletion disrupts the immunological state of tumors and reduces intra-tumoral bacteria. Our results establish a coupling between microbes and T cells in cancer wherein spatially defined immune-microbial communities differentially influence tumor biology.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Pancreatic Neoplasms , Mice , Animals , Humans , T-Lymphocytes/pathology , Pancreatic Neoplasms/pathology , Cell Communication , Tumor Microenvironment
3.
Sci Immunol ; 8(89): eadj5097, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37976347

ABSTRACT

Myeloid cells facilitate T cell immune evasion in cancer yet are pliable and have antitumor potential. Here, by cotargeting myeloid activation molecules, we leveraged the myeloid compartment as a therapeutic vulnerability in mouse models of pancreatic cancer. Myeloid cells in solid tumors expressed activation receptors including the pattern recognition receptor Dectin-1 and the TNF receptor superfamily member CD40. In mouse models of checkpoint inhibitor-resistant pancreatic cancer, coactivation of Dectin-1, via systemic ß-glucan therapy, and CD40, with agonist antibody treatment, eradicated established tumors and induced immunological memory. Antitumor activity was dependent on cDC1s and T cells but did not require classical T cell-mediated cytotoxicity or blockade of checkpoint molecules. Rather, targeting CD40 drove T cell-mediated IFN-γ signaling, which converged with Dectin-1 activation to program distinct macrophage subsets to facilitate tumor responses. Thus, productive cancer immune surveillance in pancreatic tumors resistant to checkpoint inhibition can be invoked by coactivation of complementary myeloid signaling pathways.


Subject(s)
Pancreatic Neoplasms , Mice , Animals , CD40 Antigens , Immunotherapy
4.
Nat Commun ; 14(1): 6330, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816712

ABSTRACT

Although macrophages contribute to cancer cell dissemination, immune evasion, and metastatic outgrowth, they have also been reported to coordinate tumor-specific immune responses. We therefore hypothesized that macrophage polarization could be modulated therapeutically to prevent metastasis. Here, we show that macrophages respond to ß-glucan (odetiglucan) treatment by inhibiting liver metastasis. ß-glucan activated liver-resident macrophages (Kupffer cells), suppressed cancer cell proliferation, and invoked productive T cell-mediated responses against liver metastasis in pancreatic cancer mouse models. Although excluded from metastatic lesions, Kupffer cells were critical for the anti-metastatic activity of ß-glucan, which also required T cells. Furthermore, ß-glucan drove T cell activation and macrophage re-polarization in liver metastases in mice and humans and sensitized metastatic lesions to anti-PD1 therapy. These findings demonstrate the significance of macrophage function in metastasis and identify Kupffer cells as a potential therapeutic target against pancreatic cancer metastasis to the liver.


Subject(s)
Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , beta-Glucans , Humans , Animals , Mice , Kupffer Cells/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/prevention & control , Liver Neoplasms/pathology
5.
JCI Insight ; 6(14)2021 07 22.
Article in English | MEDLINE | ID: mdl-34101617

ABSTRACT

Agonist CD40 antibodies are under clinical development in combination with chemotherapy as an approach to prime for antitumor T cell immunity. However, treatment with anti-CD40 is commonly accompanied by both systemic cytokine release and liver transaminase elevations, which together account for the most common dose-limiting toxicities. Moreover, anti-CD40 treatment increases the potential for chemotherapy-induced hepatotoxicity. Here, we report a mechanistic link between cytokine release and hepatotoxicity induced by anti-CD40 when combined with chemotherapy and show that toxicity can be suppressed without impairing therapeutic efficacy. We demonstrate in mice and humans that anti-CD40 triggers transient hepatotoxicity marked by increased serum transaminase levels. In doing so, anti-CD40 sensitizes the liver to drug-induced toxicity. Unexpectedly, this biology is not blocked by the depletion of multiple myeloid cell subsets, including macrophages, inflammatory monocytes, and granulocytes. Transcriptional profiling of the liver after anti-CD40 revealed activation of multiple cytokine pathways including TNF and IL-6. Neutralization of TNF, but not IL-6, prevented sensitization of the liver to hepatotoxicity induced with anti-CD40 in combination with chemotherapy without impacting antitumor efficacy. Our findings reveal a clinically feasible approach to mitigate toxicity without impairing efficacy in the use of agonist CD40 antibodies for cancer immunotherapy.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , CD40 Antigens/agonists , Carcinoma, Pancreatic Ductal/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Pancreatic Neoplasms/drug therapy , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , CD40 Antigens/immunology , Carcinoma, Pancreatic Ductal/immunology , Cell Line, Tumor , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/pathology , Humans , Immunotherapy/methods , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Liver/drug effects , Liver/immunology , Liver/pathology , Mice , Myeloid Cells/drug effects , Myeloid Cells/immunology , Pancreatic Neoplasms/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays
6.
Pharmacol Ther ; 201: 202-213, 2019 09.
Article in English | MEDLINE | ID: mdl-31158393

ABSTRACT

Inflammation is a hallmark of cancer. For pancreatic ductal adenocarcinoma (PDAC), malignant cells arise in the context of a brisk inflammatory cell infiltrate surrounded by dense fibrosis that is seen beginning at the earliest stages of cancer conception. This inflammatory and fibrotic milieu supports cancer cell escape from immune elimination and promotes malignant progression and metastatic spread to distant organs. Targeting this inflammatory reaction in PDAC by inhibiting or depleting pro-tumor elements and by engaging the potential of inflammatory cells to acquire anti-tumor activity has garnered strong research and clinical interest. Herein, we describe the current understanding of key determinants of inflammation in PDAC; mechanisms by which inflammation drives immune suppression; the impact of inflammation on metastasis, therapeutic resistance, and clinical outcomes; and strategies to intervene on inflammation for providing therapeutic benefit.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Inflammation/pathology , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Humans , Immunotherapy/methods , Inflammation/immunology , Inflammation/therapy , Neoplasm Metastasis , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy
7.
Cancer Res ; 79(13): 3445-3454, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31088836

ABSTRACT

Although ovarian cancer has a low incidence rate, it remains the most deadly gynecologic malignancy. Previous work has demonstrated that the DNMTi 5-Azacytidine (5AZA-C) activates type I interferon signaling to increase IFNγ+ T cells and natural killer (NK) cells and reduce the percentage of macrophages in the tumor microenvironment. To improve the efficacy of epigenetic therapy, we hypothesized that the addition of α-difluoromethylornithine (DFMO), an ornithine decarboxylase inhibitor, may further decrease immunosuppressive cell populations improving outcome. We tested this hypothesis in an immunocompetent mouse model for ovarian cancer and found that in vivo, 5AZA-C and DFMO, either alone or in combination, significantly increased survival, decreased tumor burden, and caused recruitment of activated (IFNγ+) CD4+ T cells, CD8+ T cells, and NK cells. The combination therapy had a striking increase in survival when compared with single-agent treatment, despite a smaller difference in recruited lymphocytes. Instead, combination therapy led to a significant decrease in immunosuppressive cells such as M2 polarized macrophages and an increase in tumor-killing M1 macrophages. In this model, depletion of macrophages with a CSF1R-blocking antibody reduced the efficacy of 5AZA-C + DFMO treatment and resulted in fewer M1 macrophages in the tumor microenvironment. These observations suggest our novel combination therapy modifies macrophage polarization in the tumor microenvironment, recruiting M1 macrophages and prolonging survival. SIGNIFICANCE: Combined epigenetic and polyamine-reducing therapy stimulates M1 macrophage polarization in the tumor microenvironment of an ovarian cancer mouse model, resulting in decreased tumor burden and prolonged survival.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cystadenocarcinoma, Serous/immunology , Disease Models, Animal , Immunity, Innate/immunology , Macrophages/immunology , Ovarian Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Azacitidine/administration & dosage , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Eflornithine/administration & dosage , Female , Immunity, Innate/drug effects , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Polyamines/metabolism , Tumor Cells, Cultured , Tumor Microenvironment/drug effects
8.
Nature ; 567(7747): 249-252, 2019 03.
Article in English | MEDLINE | ID: mdl-30842658

ABSTRACT

The liver is the most common site of metastatic disease1. Although this metastatic tropism may reflect the mechanical trapping of circulating tumour cells, liver metastasis is also dependent, at least in part, on the formation of a 'pro-metastatic' niche that supports the spread of tumour cells to the liver2,3. The mechanisms that direct the formation of this niche are poorly understood. Here we show that hepatocytes coordinate myeloid cell accumulation and fibrosis within the liver and, in doing so, increase the susceptibility of the liver to metastatic seeding and outgrowth. During early pancreatic tumorigenesis in mice, hepatocytes show activation of signal transducer and activator of transcription 3 (STAT3) signalling and increased production of serum amyloid A1 and A2 (referred to collectively as SAA). Overexpression of SAA by hepatocytes also occurs in patients with pancreatic and colorectal cancers that have metastasized to the liver, and many patients with locally advanced and metastatic disease show increases in circulating SAA. Activation of STAT3 in hepatocytes and the subsequent production of SAA depend on the release of interleukin 6 (IL-6) into the circulation by non-malignant cells. Genetic ablation or blockade of components of IL-6-STAT3-SAA signalling prevents the establishment of a pro-metastatic niche and inhibits liver metastasis. Our data identify an intercellular network underpinned by hepatocytes that forms the basis of a pro-metastatic niche in the liver, and identify new therapeutic targets.


Subject(s)
Hepatocytes/pathology , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Liver/pathology , Neoplasm Metastasis , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Animals , Carcinoma, Pancreatic Ductal/pathology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/secondary , Female , Interleukin-6/metabolism , Male , Mice , STAT3 Transcription Factor/metabolism , Serum Amyloid A Protein/metabolism
10.
Proc Natl Acad Sci U S A ; 114(51): E10981-E10990, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29203668

ABSTRACT

Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.


Subject(s)
Epigenesis, Genetic/drug effects , Immunomodulation/drug effects , Interferon Type I/metabolism , Ovarian Neoplasms/etiology , Ovarian Neoplasms/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents, Immunological , Azacitidine/pharmacology , Cell Line, Tumor , Disease Models, Animal , Female , Histone Deacetylase Inhibitors/pharmacology , Mice , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Tumor Burden/drug effects , Tumor Burden/immunology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...