Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 184(22): 5670-5685.e23, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34637702

ABSTRACT

We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.


Subject(s)
Biosensing Techniques , Peptides/chemistry , Single Molecule Imaging , Animals , Cell Adhesion , Cell Line , Cell Survival , Embryo, Mammalian/cytology , Enzyme Activation , Fibroblasts/metabolism , Fluorescence Resonance Energy Transfer , Humans , Kinetics , Mice , Nanoparticles/chemistry , Protein Conformation , src-Family Kinases/metabolism
2.
Nat Chem Biol ; 16(9): 1034, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32694868

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Commun ; 11(1): 1921, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317641

ABSTRACT

Actomyosin supracellular networks emerge during development and tissue repair. These cytoskeletal structures are able to generate large scale forces that can extensively remodel epithelia driving tissue buckling, closure and extension. How supracellular networks emerge, are controlled and mechanically work still remain elusive. During Drosophila oogenesis, the egg chamber elongates along the anterior-posterior axis. Here we show that a dorsal-ventral polarized supracellular F-actin network, running around the egg chamber on the basal side of follicle cells, emerges from polarized intercellular filopodia that radiate from basal stress fibers and extend penetrating neighboring cell cortexes. Filopodia can be mechanosensitive and function as cell-cell anchoring sites. The small GTPase Cdc42 governs the formation and distribution of intercellular filopodia and stress fibers in follicle cells. Finally, our study shows that a Cdc42-dependent supracellular cytoskeletal network provides a scaffold integrating local oscillatory actomyosin contractions at the tissue scale to drive global polarized forces and tissue elongation.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , GTP-Binding Proteins/metabolism , Oogenesis , Actins/metabolism , Actomyosin/metabolism , Animals , Anisotropy , Cell Adhesion , Cell Polarity , Cytoskeleton/metabolism , Epithelium/metabolism , Female , Glutathione Transferase/metabolism , Green Fluorescent Proteins/metabolism , Myosin Type II/metabolism , Optogenetics , Pseudopodia/metabolism , RNA Interference
4.
Nat Chem Biol ; 15(12): 1183-1190, 2019 12.
Article in English | MEDLINE | ID: mdl-31740825

ABSTRACT

Here we introduce Z-lock, an optogenetic approach for reversible, light-controlled steric inhibition of protein active sites. The light oxygen voltage (LOV) domain and Zdk, a small protein that binds LOV selectively in the dark, are appended to the protein of interest where they sterically block the active site. Irradiation causes LOV to change conformation and release Zdk, exposing the active site. Computer-assisted protein design was used to optimize linkers and Zdk-LOV affinity, for both effective binding in the dark, and effective light-induced release of the intramolecular interaction. Z-lock cofilin was shown to have actin severing ability in vitro, and in living cancer cells it produced protrusions and invadopodia. An active fragment of the tubulin acetylase αTAT was similarly modified and shown to acetylate tubulin on irradiation.


Subject(s)
Acetylesterase/chemistry , Actin Depolymerizing Factors/chemistry , Optogenetics , Tubulin/chemistry , Acetylation
5.
J Cell Biol ; 218(9): 3153-3160, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31444239

ABSTRACT

Lattice light-sheet microscopy (LLSM) is valuable for its combination of reduced photobleaching and outstanding spatiotemporal resolution in 3D. Using LLSM to image biosensors in living cells could provide unprecedented visualization of rapid, localized changes in protein conformation or posttranslational modification. However, computational manipulations required for biosensor imaging with LLSM are challenging for many software packages. The calculations require processing large amounts of data even for simple changes such as reorientation of cell renderings or testing the effects of user-selectable settings, and lattice imaging poses unique challenges in thresholding and ratio imaging. We describe here a new software package, named ImageTank, that is specifically designed for practical imaging of biosensors using LLSM. To demonstrate its capabilities, we use a new biosensor to study the rapid 3D dynamics of the small GTPase Rap1 in vesicles and cell protrusions.


Subject(s)
Biosensing Techniques , Fluorescence Resonance Energy Transfer , Human Umbilical Vein Endothelial Cells/metabolism , Image Processing, Computer-Assisted , Signal Transduction , Software , Telomere-Binding Proteins/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Humans , Microscopy, Fluorescence , Shelterin Complex , Telomere-Binding Proteins/genetics
6.
PLoS One ; 9(9): e108611, 2014.
Article in English | MEDLINE | ID: mdl-25254496

ABSTRACT

BACKGROUND: Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. METHODS AND RESULTS: Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. CONCLUSIONS: Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in development other of HIC-compatible protein purification schemes.


Subject(s)
Chromatography/methods , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/isolation & purification , Recombinant Proteins , Chromatography, Gel , Chromatography, Liquid , Hydrophobic and Hydrophilic Interactions
7.
J Vis Exp ; (55)2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21968976

ABSTRACT

In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein (1). The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH(4;))(2;)SO(4;)). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) (2). As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter (3). Automated column scouting allows for an efficient approach for determining which HIC media should be employed for future, more exhaustive optimization experiments and protein purification runs (4). The specific protein being purified here is recombinant green fluorescent protein (GFP); however, the approach may be adapted for purifying other proteins with one or more hydrophobic surface regions. GFP serves as a useful model protein, due to its stability, unique light absorbance peak at 397 nm, and fluorescence when exposed to UV light (5). Bacterial lysate containing wild type GFP was prepared in a high-salt buffer, loaded into a Bio-Rad DuoFlow medium pressure liquid chromatography system, and adsorbed to HiTrap HIC columns containing different HIC media. The protein was eluted from the columns and analyzed by in-line and post-run detection methods. Buffer blending, dynamic sample loop injection, sequential column selection, multi-wavelength analysis, and split fraction eluate collection increased the functionality of the system and reproducibility of the experimental approach.


Subject(s)
Chromatography/methods , Proteins/chemistry , Proteins/isolation & purification , Green Fluorescent Proteins/isolation & purification , Hydrophobic and Hydrophilic Interactions , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...