Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nature ; 627(8005): 789-796, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38538940

ABSTRACT

The Antarctic Circumpolar Current (ACC) represents the world's largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability1-3. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity4. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial-interglacial cycles5-8, the long-term evolution of the ACC is poorly known. Here we document changes in ACC strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling9 and increasing global ice volume10. Instead, we observe a reversal on a million-year timescale, from increasing ACC strength during Pliocene global cooling to a subsequent decrease with further Early Pleistocene cooling. This shift in the ACC regime coincided with a Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric and oceanic forcings11-13. We find ACC strength changes to be closely linked to 400,000-year eccentricity cycles, probably originating from modulation of precessional changes in the South Pacific jet stream linked to tropical Pacific temperature variability14. A persistent link between weaker ACC flow, equatorward-shifted opal deposition and reduced atmospheric CO2 during glacial periods first emerged during the Mid-Pleistocene Transition (MPT). The strongest ACC flow occurred during warmer-than-present intervals of the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future climate warming.

2.
Proc Natl Acad Sci U S A ; 119(24): e2200749119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35666861

ABSTRACT

The strength of the geomagnetic field has decreased rapidly over the past two centuries, coinciding with an increasing field asymmetry due to the growth of the South Atlantic Anomaly. The underlying processes causing the decrease are debated, which has led to speculation that the field is about to reverse. Here, we present a geomagnetic field model based on indirect observations over the past 9,000 y and identify potential ancient analogs. The model is constructed using a probabilistic approach that addresses problems with age uncertainties and smoothing of sedimentary data that have hampered previous attempts. We find evidence for recurrent hemispherical field asymmetries, related to quasiperiodic millennial-scale variations in the dipole moment. Our reconstruction indicates that minima in the dipole moment tend to coincide with geomagnetic field anomalies, similar to the South Atlantic Anomaly. We propose that the period around 600 BCE, characterized by a strongly asymmetric field, could provide an analog to the present-day field. The analogy implies that the South Atlantic Anomaly will likely disappear in next few hundred years, accompanied by a return to a more symmetric field configuration and possibly, a strengthening of the axial dipole field.

3.
Science ; 370(6517): 716-720, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33004677

ABSTRACT

New radiocarbon and sedimentological results from the Gulf of Alaska document recurrent millennial-scale episodes of reorganized Pacific Ocean ventilation synchronous with rapid Cordilleran Ice Sheet discharge, indicating close coupling of ice-ocean dynamics spanning the past 42,000 years. Ventilation of the intermediate-depth North Pacific tracks strength of the Asian monsoon, supporting a role for moisture and heat transport from low latitudes in North Pacific paleoclimate. Changes in carbon-14 age of intermediate waters are in phase with peaks in Cordilleran ice-rafted debris delivery, and both consistently precede ice discharge events from the Laurentide Ice Sheet, known as Heinrich events. This timing precludes an Atlantic trigger for Cordilleran Ice Sheet retreat and instead implicates the Pacific as an early part of a cascade of dynamic climate events with global impact.

4.
Proc Natl Acad Sci U S A ; 117(44): 27171-27178, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33046633

ABSTRACT

Global warming due to anthropogenic factors can be amplified or dampened by natural climate oscillations, especially those involving sea surface temperatures (SSTs) in the North Atlantic which vary on a multidecadal scale (Atlantic multidecadal variability, AMV). Because the instrumental record of AMV is short, long-term behavior of AMV is unknown, but climatic teleconnections to regions beyond the North Atlantic offer the prospect of reconstructing AMV from high-resolution records elsewhere. Annually resolved titanium from an annually laminated sedimentary record from Ellesmere Island, Canada, shows that the record is strongly influenced by AMV via atmospheric circulation anomalies. Significant correlations between this High-Arctic proxy and other highly resolved Atlantic SST proxies demonstrate that it shares the multidecadal variability seen in the Atlantic. Our record provides a reconstruction of AMV for the past ∼3 millennia at an unprecedented time resolution, indicating North Atlantic SSTs were coldest from ∼1400-1800 CE, while current SSTs are the warmest in the past ∼2,900 y.


Subject(s)
Global Warming/history , Temperature , Arctic Regions , Atlantic Ocean , Atmosphere , Climate , History, 18th Century , History, 19th Century , History, 20th Century , Seasons
5.
Nat Commun ; 11(1): 5135, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046707

ABSTRACT

Abrupt warming events recorded in Greenland ice cores known as Dansgaard-Oeschger (DO) interstadials are linked to changes in tropical circulation during the last glacial cycle. Corresponding variations in South American summer monsoon (SASM) strength are documented, most commonly, in isotopic records from speleothems, but less is known about how these changes affected precipitation and Andean glacier mass balance. Here we present a sediment record spanning the last ~50 ka from Lake Junín (Peru) in the tropical Andes that has sufficient chronologic precision to document abrupt climatic events on a centennial-millennial time scale. DO events involved the near-complete disappearance of glaciers below 4700 masl in the eastern Andean cordillera and major reductions in the level of Peru's second largest lake. Our results reveal the magnitude of the hydroclimatic disruptions in the highest reaches of the Amazon Basin that were caused by a weakening of the SASM during abrupt arctic warming. Accentuated warming in the Arctic could lead to significant reductions in the precipitation-evaporation balance of the southern tropical Andes with deleterious effects on this densely populated region of South America.

6.
Biol Lett ; 14(2)2018 02.
Article in English | MEDLINE | ID: mdl-29438054

ABSTRACT

Organisms use a variety of environmental cues to orient their movements in three-dimensional space. Here, we show that the upward movement of young Chinook salmon (Oncorhynchus tshawytscha) emerging from gravel nests is influenced by the geomagnetic field. Fish in the ambient geomagnetic field travelled farther upwards through substrate than did fish tested in a field with the vertical component inverted. This suggests that the magnetic field is one of several factors that influences emergence from the gravel, possibly by serving as an orientation cue that helps fish determine which way is up. Moreover, our work indicates that the Oncorhynchus species are sensitive to the magnetic field throughout their life cycles, and that it guides their movements across a range of spatial scales and habitats.


Subject(s)
Behavior, Animal/physiology , Magnetic Phenomena , Salmon/physiology , Animals , Orientation, Spatial/physiology
7.
Proc Natl Acad Sci U S A ; 112(49): 15042-7, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26598689

ABSTRACT

Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼ 2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8-1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼ 100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2-0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50-80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale.

8.
Nature ; 510(7506): 525-8, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24965655

ABSTRACT

Varying levels of boreal summer insolation and associated Earth system feedbacks led to differing climate and ice-sheet states during late-Quaternary interglaciations. In particular, Marine Isotope Stage (MIS) 11 was an exceptionally long interglaciation and potentially had a global mean sea level 6 to 13 metres above the present level around 410,000 to 400,000 years ago, implying substantial mass loss from the Greenland ice sheet (GIS). There are, however, no model simulations and only limited proxy data to constrain the magnitude of the GIS response to climate change during this 'super interglacial', thus confounding efforts to assess climate/ice-sheet threshold behaviour and associated sea-level rise. Here we show that the south GIS was drastically smaller during MIS 11 than it is now, with only a small residual ice dome over southernmost Greenland. We use the strontium-neodymium-lead isotopic composition of proglacial sediment discharged from south Greenland to constrain the provenance of terrigenous silt deposited on the Eirik Drift, a sedimentary deposit off the south Greenland margin. We identify a major reduction in sediment input derived from south Greenland's Precambrian bedrock terranes, probably reflecting the cessation of subglacial erosion and sediment transport as a result of near-complete deglaciation of south Greenland. Comparison with ice-sheet configurations from numerical models suggests that the GIS lost about 4.5 to 6 metres of sea-level-equivalent volume during MIS 11. This is evidence for late-Quaternary GIS collapse after it crossed a climate/ice-sheet stability threshold that may have been no more than several degrees above pre-industrial temperatures.

9.
Science ; 333(6042): 620-3, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21798947

ABSTRACT

To ascertain the response of the southern Greenland Ice Sheet (GIS) to a boreal summer climate warmer than at present, we explored whether southern Greenland was deglaciated during the Last Interglacial (LIG), using the Sr-Nd-Pb isotope ratios of silt-sized sediment discharged from southern Greenland. Our isotope data indicate that no single southern Greenland geologic terrane was completely deglaciated during the LIG, similar to the Holocene. Differences in sediment sources during the LIG relative to the early Holocene denote, however, greater southern GIS retreat during the LIG. These results allow the evaluation of a suite of GIS models and are consistent with a GIS contribution of 1.6 to 2.2 meters to the ≥4-meter LIG sea-level highstand, requiring a significant sea-level contribution from the Antarctic Ice Sheet.

10.
Ecol Appl ; 18(8 Suppl): A239-56, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19475928

ABSTRACT

We analyzed the sedimentological characteristics and magnetic properties of cores from the three basins of Clear Lake, California, USA, to assess the depositional response to a series of land use changes that occurred in the watershed over the 20th century. Results indicate that distinct and abrupt shifts in particle size, magnetic concentration/mineralogy, and redox conditions occur concurrently with a variety of ecological and chemical changes in lake bed sediments. This coincidence of events occurred around 1927, a datum determined by an abrupt increase in total mercury (Hg) in Clear Lake cores and the known initiation of open-pit Hg mining at the Sulphur Bank Mercury Mine, confirmed by 210Pb dating. Ages below the 1927 horizon were determined by accelerator mass spectrometry on 14C of coarse organic debris. Calculated sedimentation rates below the 1927 datum are approximately 1 mm/yr, whereas rates from 1927 to 2000 are up to an order of magnitude higher, with averages of approximately 3.5-19 mm/yr. In both the Oaks and Upper Arms, the post-1927 co-occurrence of abrupt shifts in magnetic signatures with color differences indicative of changing redox conditions is interpreted to reflect a more oxygenated diagenetic regime and rapid burial of sediment below the depth of sulfate diffusion. Post-1927 in the Oaks Arm, grain size exhibits a gradual coarsening-upward pattern that we attribute to the input of mechanically deposited waste rock related to open-pit mining activities at the mine. In contrast, grain size in the Upper Arm exhibits a gradational fining-upward after 1927 that we interpret as human-induced erosion of fine-grained soils and chemically weathered rocks of the Franciscan Assemblage by heavy earthmoving equipment associated with a road- and home-building boom, exacerbated by stream channel mining and wetlands destruction. The flux of fine-grained sediment into the Upper Arm increased the nutrient load to the lake, and that in turn catalyzed profuse cyanobacterial blooms through the 20th century. The resulting organic biomass, in combination with the increased inorganic sediment supply, contributed to the abrupt increase in sedimentation rate after 1927.


Subject(s)
Fresh Water/chemistry , Geologic Sediments/chemistry , Human Activities , Magnetics , Mining , California , Carbon Radioisotopes , Ecosystem , Mass Spectrometry , Mercury/chemistry , Mercury/metabolism , Microscopy, Electron, Scanning , Radiometric Dating , Time Factors , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
11.
Science ; 304(5679): 1959-62, 2004 Jun 25.
Article in English | MEDLINE | ID: mdl-15218147

ABSTRACT

Marine sediments from the Chilean continental margin are used to infer millennial-scale changes in southeast Pacific surface ocean water properties and Patagonian ice sheet extent since the last glacial period. Our data show a clear "Antarctic" timing of sea surface temperature changes, which appear systematically linked to meridional displacements in sea ice, westerly winds, and the circumpolar current system. Proxy data for ice sheet changes show a similar pattern as oceanographic variations offshore, but reveal a variable glacier-response time of up to approximately 1000 years, which may explain some of the current discrepancies among terrestrial records in southern South America.

SELECTION OF CITATIONS
SEARCH DETAIL
...