Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(6): e0128431, 2015.
Article in English | MEDLINE | ID: mdl-26030618

ABSTRACT

BACKGROUND: Streptococcus agalactiae (Group B Streptococcus, GBS) is the leading cause of life-threatening meningitis in human newborns in industrialized countries. Meningitis results from neonatal infection that occurs when GBS leaves the bloodstream (bacteremia), crosses the blood-brain barrier (BBB), and enters the central nervous system (CNS), where the bacteria contact the meninges. Although GBS is known to invade the BBB, subsequent interaction with astrocytes that physically associate with brain endothelium has not been well studied. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesize that human astrocytes play a unique role in GBS infection and contribute to the development of meningitis. To address this, we used a well- characterized human fetal astrocyte cell line, SVG-A, and examined GBS infection in vitro. We observed that all GBS strains of representative clinically dominant serotypes (Ia, Ib, III, and V) were able to adhere to and invade astrocytes. Cellular invasion was dependent on host actin cytoskeleton rearrangements, and was specific to GBS as Streptococcus gordonii failed to enter astrocytes. Analysis of isogenic mutant GBS strains deficient in various cell surface organelles showed that anchored LTA, serine-rich repeat protein (Srr1) and fibronectin binding (SfbA) proteins all contribute to host cell internalization. Wild-type GBS also displayed an ability to persist and survive within an intracellular compartment for at least 12 h following invasion. Moreover, GBS infection resulted in increased astrocyte transcription of interleukin (IL)-1ß, IL-6 and VEGF. CONCLUSIONS/SIGNIFICANCE: This study has further characterized the interaction of GBS with human astrocytes, and has identified the importance of specific virulence factors in these interactions. Understanding the role of astrocytes during GBS infection will provide important information regarding BBB disruption and the development of neonatal meningitis.


Subject(s)
Astrocytes/pathology , Streptococcal Infections/metabolism , Streptococcus agalactiae/pathogenicity , Bacterial Adhesion , Humans , Streptococcal Infections/pathology
2.
Antiviral Res ; 93(3): 322-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22252168

ABSTRACT

Avian influenza viruses are a source of genetic material that can be transmitted to humans through direct introduction or reassortment. Although there is a wealth of information concerning global monitoring for antiviral resistance among human viruses of the N1 and N2 neuraminidase (NA) subtypes, information concerning avian viruses of these and other NA subtypes is limited. We undertook a surveillance study to investigate the antiviral susceptibility of avian influenza N6 NA viruses, the predominant subtype among wild waterfowl. We evaluated 73 viruses from North American ducks and shorebirds for susceptibility to the NA inhibitor oseltamivir in a fluorescence-based NA enzyme inhibition assay. Most (90%) had mean IC(50) values ranging from <0.01 to 5.0nM; 10% were from 5.1 to 50.0nM; and none were >50.0nM. Susceptibility to oseltamivir remained stable among all isolates collected over approximately three decades (P⩽0.74). Two isolates with I222V NA substitution had moderately reduced susceptibility to oseltamivir in vitro (IC(50), 30.0 and 40.0nM). One field sample was a mixed population containing an avian paramyxovirus (APMV) and H4N6 influenza virus, as revealed by electron microscopy and hemagglutination inhibition assays with a panel of anti-APMV antisera. This highlights the importance of awareness and careful examination of non-influenza pathogens in field samples from avian sources. This study showed that oseltamivir-resistant N6 NA avian influenza viruses are rare, and must be tested both phenotypically and genotypically to confirm resistance.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Influenza A virus/drug effects , Influenza A virus/enzymology , Influenza in Birds/virology , Neuraminidase/antagonists & inhibitors , Oseltamivir/pharmacology , Viral Proteins/antagonists & inhibitors , Animals , Anseriformes , Influenza A virus/classification , Influenza A virus/isolation & purification , Microbial Sensitivity Tests
3.
J Virol ; 84(19): 9800-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20660186

ABSTRACT

Influenza viruses of the N1 neuraminidase (NA) subtype affecting both animals and humans caused the 2009 pandemic. Anti-influenza virus NA inhibitors are crucial early in a pandemic, when specific influenza vaccines are unavailable. Thus, it is urgent to confirm the antiviral susceptibility of the avian viruses, a potential source of a pandemic virus. We evaluated the NA inhibitor susceptibilities of viruses of the N1 subtype isolated from wild waterbirds, swine, and humans. Most avian viruses were highly or moderately susceptible to oseltamivir (50% inhibitory concentration [IC(50)], <5.1 to 50 nM). Of 91 avian isolates, 7 (7.7%) had reduced susceptibility (IC(50), >50 nM) but were sensitive to the NA inhibitors zanamivir and peramivir. Oseltamivir susceptibility ranged more widely among the waterbird viruses (IC(50), 0.5 to 154.43 nM) than among swine and human viruses (IC(50), 0.33 to 2.56 nM). Swine viruses were sensitive to oseltamivir, compared to human seasonal H1N1 isolated before 2007 (mean IC(50), 1.4 nM). Avian viruses from 2007 to 2008 were sensitive to oseltamivir, in contrast to the emergence of resistant H1N1 in humans. Susceptibility remained high to moderate over time among influenza viruses. Sequence analysis of the outliers did not detect molecular markers of drug-resistance (e.g., H275Y NA mutation [N1 numbering]) but revealed mutations outside the NA active site. In particular, V267I, N307D, and V321I residue changes were found, and structural analyses suggest that these mutations distort hydrophobic pockets and affect residues in the NA active site. We determined that natural oseltamivir resistance among swine and wild waterbirds is rare. Minor naturally occurring variants in NA can affect antiviral susceptibility.


Subject(s)
Birds/virology , Influenza A virus/classification , Influenza A virus/drug effects , Neuraminidase/classification , Swine/virology , Acids, Carbocyclic , Animals , Antiviral Agents/pharmacology , Catalytic Domain/genetics , Cyclopentanes/pharmacology , Drug Resistance, Viral/genetics , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A virus/enzymology , Influenza A virus/genetics , Influenza in Birds/virology , Influenza, Human/drug therapy , Influenza, Human/virology , Models, Molecular , Mutation , Neuraminidase/antagonists & inhibitors , Neuraminidase/chemistry , Neuraminidase/genetics , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Oseltamivir/pharmacology , Protein Conformation , Species Specificity , Swine Diseases/virology , Viral Proteins/chemistry , Viral Proteins/genetics , Zanamivir/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...