Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol J ; 11(7): 899-909, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27067803

ABSTRACT

Increases in mammalian cell culture titres and densities have placed significant demands on primary recovery operation performance. This article presents a methodology which aims to screen rapidly and evaluate primary recovery technologies for their scope for technically feasible and cost-effective operation in the context of high cell density mammalian cell cultures. It was applied to assess the performance of current (centrifugation and depth filtration options) and alternative (tangential flow filtration (TFF)) primary recovery strategies. Cell culture test materials (CCTM) were generated to simulate the most demanding cell culture conditions selected as a screening challenge for the technologies. The performance of these technology options was assessed using lab scale and ultra scale-down (USD) mimics requiring 25-110mL volumes for centrifugation and depth filtration and TFF screening experiments respectively. A centrifugation and depth filtration combination as well as both of the alternative technologies met the performance selection criteria. A detailed process economics evaluation was carried out at three scales of manufacturing (2,000L, 10,000L, 20,000L), where alternative primary recovery options were shown to potentially provide a more cost-effective primary recovery process in the future. This assessment process and the study results can aid technology selection to identify the most effective option for a specific scenario.


Subject(s)
Batch Cell Culture Techniques/methods , CHO Cells/cytology , Animals , Biotechnology/methods , Cell Count , Cell Line , Cell Proliferation , Cell Survival , Centrifugation , Cricetinae , Cricetulus , Filtration/methods
2.
Biotechnol J ; 10(1): 162-70, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25377169

ABSTRACT

Mammalian cell culture material is often difficult to produce accurately and reproducibly for downstream studies. This article presents a methodology for the creation of a set of cell culture test materials where key variables including cell density, cell viability, product, and the host cell protein (HCP) load can be manipulated individually. The methodology was developed using a glutamine synthetase Chinese hamster ovary cell line cultured at 5-L and 70-L scales. Cell concentration post-cell growth was manipulated using tangential flow filtration to generate a range of target cell densities of up to 100 × 10(6) cells/mL. A method to prepare an apoptotic cell stock to achieve target viabilities of 40-90% is also described. In addition, a range of IgG1 and HCP concentrations was achieved. The results illustrate that the proposed methodology is able to mimic different cell culture profiles by decoupling the control of the key variables. The cell culture test materials were shown to be representative of typical cell culture feed material in terms of particle size distribution and HCP population. This provides a rapid method to create the required feeds for assessing the feasibility of primary recovery technologies designed to cope with higher cell density cultures.


Subject(s)
Apoptosis , Biotechnology/methods , Cell Culture Techniques/methods , Cell Survival , Recombinant Proteins/isolation & purification , Animals , CHO Cells , Cell Proliferation , Cricetinae , Cricetulus , Culture Media , Immunoglobulin G/chemistry , Immunoglobulin G/isolation & purification , Recombinant Proteins/chemistry , Research Design
3.
Biotechnol Prog ; 29(2): 368-77, 2013.
Article in English | MEDLINE | ID: mdl-23281334

ABSTRACT

This article describes a decision-support tool to help pinpoint the potential root causes of sub-optimal short-term facility fit issues in biopharmaceutical facilities. This was achieved by creating a tool that integrated stochastic simulation with advanced multivariate statistical analysis. Process fluctuations in product titers in cell culture, step yields, and chromatography eluate volumes were mimicked using Monte Carlo simulation data derived using a stochastic discrete-event simulation model. The resulting stochastic datasets, with the computed consequences on key metrics such as product mass loss and cost of goods, were examined using advanced multivariate statistical techniques. Principal component analysis combined with clustering algorithms was used to analyze the complex datasets from complete industrial batch processes for biopharmaceuticals. The challenge of visualizing the multidimensional nature of the dataset was addressed using hierarchical and k-means clustering as well as stacked parallel co-ordinate plots to help identify process fingerprints and characteristics of clusters leading to sub-optimal facility fit issues. Industrially-relevant case studies are presented that focus on technology transfer challenges for therapeutic antibodies moving from early phase to late phase clinical trials. The case study details how sub-optimal facility fit can be alleviated by allocating alternative product pool tanks. The impact of this operational change is then assessed by reviewing an updated process fingerprint.


Subject(s)
Biotechnology/instrumentation , Antibodies/chemistry , Antibodies/isolation & purification , Biotechnology/methods , Chromatography , Computer Simulation , Models, Theoretical , Monte Carlo Method , Multivariate Analysis , Principal Component Analysis , Research Design
4.
Biotechnol Prog ; 28(4): 1019-28, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22641562

ABSTRACT

Increases in cell culture titers in existing facilities have prompted efforts to identify strategies that alleviate purification bottlenecks while controlling costs. This article describes the application of a database-driven dynamic simulation tool to identify optimal purification sizing strategies and visualize their robustness to future titer increases. The tool harnessed the benefits of MySQL to capture the process, business, and risk features of multiple purification options and better manage the large datasets required for uncertainty analysis and optimization. The database was linked to a discrete-event simulation engine so as to model the dynamic features of biopharmaceutical manufacture and impact of resource constraints. For a given titer, the tool performed brute force optimization so as to identify optimal purification sizing strategies that minimized the batch material cost while maintaining the schedule. The tool was applied to industrial case studies based on a platform monoclonal antibody purification process in a multisuite clinical scale manufacturing facility. The case studies assessed the robustness of optimal strategies to batch-to-batch titer variability and extended this to assess the long-term fit of the platform process as titers increase from 1 to 10 g/L, given a range of equipment sizes available to enable scale intensification efforts. Novel visualization plots consisting of multiple Pareto frontiers with tie-lines connecting the position of optimal configurations over a given titer range were constructed. These enabled rapid identification of robust purification configurations given titer fluctuations and the facility limit that the purification suites could handle in terms of the maximum titer and hence harvest load.


Subject(s)
Antibodies/isolation & purification , Biotechnology/instrumentation , Biotechnology/methods , Chromatography/instrumentation , Chromatography/methods , Filtration/instrumentation , Filtration/methods , Biotechnology/economics , Cell Culture Techniques , Chromatography/economics , Filtration/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...