Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 288: 112444, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33823450

ABSTRACT

Effective treatment options are needed for the management of aquatic invasive species. An herbicide treatment was used to control an invasive aquatic plant, yellow floating heart (Nymphoides peltata) in a 3350-acre drinking water reservoir. The purpose of this research was to document the success of the treatment in an individual cove of the reservoir using in-situ sampling and reservoir-wide using remotely sensed Sentinel-2 satellite imagery. We also determined if the dying vegetation negatively impacted biological oxygen demand and dissolved oxygen concentrations in the cove. The aquatic herbicide ProcellaCOR™ (active ingredient = florpyrauxifen-benzyl) was used to treat a 55-acre infestation of YFH at a rate of 3 Prescription Dose Units (PDU)/ac-ft by a certified applicator in July 2019. Total surface coverage of yellow floating heart in the reservoir was reduced by more than 90% within 15 days after the treatment, and to less than 3.0 acres within 50 days after the treatment. No blooming flowers were observed after treatment and the surface coverage was close to 0% within 17 days after treatment in the cove. The effect of the herbicide treatment also appeared to carry over into the following growing season as the total surface coverage of yellow floating heart in the reservoir was less than 8 acres one year after the treatment in July 2020. The herbicide treatment resulted in short term increases in biological oxygen demand and decreases in dissolved oxygen at some sites in the cove within 3-10 days after the treatment. Dissolved oxygen then increased and concentrations were greater 42 days after treatment than they were before the treatment. Our results show that ProcellaCOR™ has the potential to control yellow floating heart infestations with relatively short-term negative impacts on dissolved oxygen concentrations. We also show that Sentinel-2 satellite imagery can be used to monitor the success of herbicide applications over large spatial and temporal scales that would not be possible from ground based monitoring alone.


Subject(s)
Drinking Water , Herbicides , Biological Oxygen Demand Analysis , Environmental Monitoring , Water Quality
2.
Environ Manage ; 45(5): 1164-74, 2010 May.
Article in English | MEDLINE | ID: mdl-20213232

ABSTRACT

In the United States, many state and federally funded conservation programs are required to quantify the water quality benefits resulting from their efforts. The objective of this research was to evaluate the impact of conservation practices subsidized by the Oklahoma Conservation Commission on phosphorus and sediment loads to Lake Wister. Conservation practices designed to increase vegetative cover in grazed pastures were evaluated using Landsat imagery and the Soil and Water Assessment Tool (SWAT). Several vegetative indices were derived from Landsat imagery captured before and after the implementation of conservation practices. Collectively, these indicators provided an estimate of the change in vegetative soil cover attributable to conservation practices in treated fields. Field characteristics, management, and changes in vegetative cover were used in the SWAT model to simulate sediment and phosphorus losses before and after practice implementation. Overall, these conservation practices yielded a 1.9% improvement in vegetative cover and a predicted sediment load reduction of 3.5%. Changes in phosphorus load ranged from a 1.0% improvement to a 3.5% increase, depending upon initial vegetative conditions. The use of fertilizers containing phosphorus as a conservation practice in low-productivity pastures was predicted by SWAT to increase net phosphorus losses despite any improvement in vegetative cover. This combination of vegetative cover analysis and hydrologic simulation was a useful tool for evaluating the effects of conservation practices at the basin scale and may provide guidance for the selection of conservation measures subsidized in future conservation programs.


Subject(s)
Conservation of Natural Resources/methods , Fresh Water/analysis , Program Evaluation , Water Pollution/prevention & control , Water Supply/standards , Agriculture/economics , Agriculture/standards , Conservation of Natural Resources/economics , Conservation of Natural Resources/legislation & jurisprudence , Financing, Government , Geologic Sediments/analysis , Models, Theoretical , Oklahoma , Phosphorus/analysis , Water Pollution/analysis , Water Supply/economics , Water Supply/legislation & jurisprudence
3.
J Environ Qual ; 38(4): 1654-63, 2009.
Article in English | MEDLINE | ID: mdl-19549942

ABSTRACT

Areas with disproportionately high pollutant losses (i.e., critical source areas [CSAs]) have been widely recognized as priority areas for the control of nonpoint-source pollution. The identification and evaluation of CSAs at the watershed scale allows state and federal programs to implement soil and water conservation measures where they are needed most. Despite many potential advantages, many state and federal conservation programs do not actively target CSAs. There is a lack of research identifying the total CSA pollutant contribution at the watershed scale, and there is no quantitative assessment of program effectiveness if CSAs are actively targeted. The purpose of this research was to identify and quantify sediment and total phosphorus loads originating from CSAs at the watershed scale using the Soil and Water Assessment Tool. This research is a synthesis of CSA targeting studies performed in six Oklahoma priority watersheds from 2001 to 2007 to aid the Oklahoma Conservation Commission in the prioritized placement of subsidized conservation measures. Within these six watersheds, 5% of the land area yielded 50% of sediment and 34% of the phosphorus load. In watersheds dominated by agriculture, the worst 5% of agricultural land contributed, on average, 22% of the total agricultural pollutant load. Pollutant loads from these agricultural CSAs were more than four times greater than the average load from agricultural areas within the watershed. Conservation practices implemented in these areas can be more effective because they have the opportunity to treat more pollutant. The evaluation of CSAs and prioritized implementation of conservation measures at the watershed scale has the potential to significantly improve the effectiveness of state and federally sponsored water quality programs.


Subject(s)
Water Pollutants , Conservation of Natural Resources
SELECTION OF CITATIONS
SEARCH DETAIL
...