Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Plant Biol ; 57: 61-71, 2020 10.
Article in English | MEDLINE | ID: mdl-32771964

ABSTRACT

The survival of plants hinges on their ability to perceive various environmental stimuli and translate them into appropriate biochemical responses. Phospholipids, a class of membrane lipid compounds that are asymmetrically distributed within plant cells, stand out among signal transmitters for their diversity of mechanisms by which they modulate stress and developmental processes. By modifying the chemo-physical properties of the plasma membrane (PM) as well as vesicle trafficking, phospholipids contribute to changes in the protein membrane landscape, and hence, signaling responses. In this article, we review the distinct signaling mechanisms phospholipids are involved in, with a special focus on the nuclear role of these compounds. Additionally, we summarize exemplary developmental processes greatly influenced by phospholipids.


Subject(s)
Phospholipids , Plants , Cell Membrane , Membrane Lipids , Plant Development , Signal Transduction
2.
Plant Physiol ; 170(1): 540-57, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26556796

ABSTRACT

Plants grown under iron (Fe)-deficient conditions induce a set of genes that enhance the efficiency of Fe uptake by the roots. In Arabidopsis (Arabidopsis thaliana), the central regulator of this response is the basic helix-loop-helix transcription factor FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). FIT activity is regulated by protein-protein interactions, which also serve to integrate external signals that stimulate and possibly inhibit Fe uptake. In the search of signaling components regulating FIT function, we identified ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12), an abiotic stress-induced transcription factor. ZAT12 interacted with FIT, dependent on the presence of the ethylene-responsive element-binding factor-associated amphiphilic repression motif. ZAT12 protein was found expressed in the root early differentiation zone, where its abundance was modulated in a root layer-specific manner. In the absence of ZAT12, FIT expression was upregulated, suggesting a negative effect of ZAT12 on Fe uptake. Consistently, zat12 loss-of-function mutants had higher Fe content than the wild type at sufficient Fe. We found that under Fe deficiency, hydrogen peroxide (H2O2) levels were enhanced in a FIT-dependent manner. FIT protein, in turn, was stabilized by H2O2 but only in the presence of ZAT12, showing that H2O2 serves as a signal for Fe deficiency responses. We propose that oxidative stress-induced ZAT12 functions as a negative regulator of Fe acquisition. A model where H2O2 mediates the negative regulation of plant responses to prolonged stress might be applicable to a variety of stress conditions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Iron/metabolism , Oxidative Stress/physiology , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Leupeptins/pharmacology , Mutation , Plants, Genetically Modified , Protein Interaction Domains and Motifs , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...