Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nanoscale ; 7(10): 4497-504, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25684315

ABSTRACT

We report on the localized deposition of nanoparticles and proteins, nano-objects commonly used in many nanodevices, by the liquid nanodispensing (NADIS) technique which consists in depositing droplets of a solution through a nanochannel drilled at the apex of an AFM tip. We demonstrate that the size of spots can be adjusted from microns down to sub-50 nm by tuning the channel diameter, independently of the chemical nature of the solute. In the case of nanoparticles, we demonstrated the ultimate limit of the method and showed that large arrays of single (or pairs of) nanoparticles can be reproducibly deposited. We further explored the possibility to deposit different visible fluorescent proteins using NADIS without loss of protein function. The intrinsic fluorescence of these proteins is characteristic of their structural integrity; the retention of fluorescence after NADIS deposition demonstrates that the proteins are intact and functional. This study demonstrates that NADIS can be a viable alternative to other scanning probe lithography techniques since it combines high resolution direct writing of nanoparticles or biomolecules with the versatility of liquid lithography techniques.


Subject(s)
Green Fluorescent Proteins/chemistry , Nanoparticles/chemistry , Microscopy, Atomic Force , Nanoparticles/ultrastructure
2.
Methods Mol Biol ; 1076: 521-36, 2014.
Article in English | MEDLINE | ID: mdl-24108642

ABSTRACT

Multimodal fluorescence imaging is a versatile method that has a wide application range from biological studies to materials science. Typical observables in multimodal fluorescence imaging are intensity, lifetime, excitation, and emission spectra which are recorded at chosen locations at the sample. This chapter describes how to build instrumentation that allows for multimodal fluorescence imaging and explains data analysis procedures for the observables.


Subject(s)
Optical Imaging/methods , Plant Cells/ultrastructure , Spectrometry, Fluorescence/methods , Absorptiometry, Photon , Fluorescence , Light
3.
J Phys Chem Lett ; 5(18): 3259-64, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-26276342

ABSTRACT

We report measurements of excitation and emission spectra of single, polymer-embedded, perylene dye molecules at room temperature. From these measurements, we can derive the Stokes shift for each single molecule. We determined the distribution of excitation and emission peak energies and, thus, the distribution of single molecule Stokes shifts. Single molecule Stokes shifts have not been recorded to date, and the Stokes shift has often been assumed to be constant in single molecule studies. Our data show that the observed spectral heterogeneity in single molecule emission originates not only from synchronous energetic shifts of the excitation and the emission spectra but also from variations in the Stokes shift, speaking against the assumption of constant Stokes shift.

4.
Beilstein J Nanotechnol ; 2: 516-24, 2011.
Article in English | MEDLINE | ID: mdl-22003458

ABSTRACT

We report a single molecule detection scheme to investigate excitation spectra of single emitters at room temperature. We demonstrate the potential of single emitter photoluminescence excitation spectroscopy by recording excitation spectra of single CdSe nanocrystals over a wide spectral range of 100 nm. The spectra exhibit emission intermittency, characteristic of single emitters. We observe large variations in the spectra close to the band edge, which represent the individual heterogeneity of the observed quantum dots. We also find specific excitation wavelengths for which the single quantum dots analyzed show an increased propensity for a transition to a long-lived dark state. We expect that the additional capability of recording excitation spectra at room temperature from single emitters will enable insights into the photophysics of emitters that so far have remained inaccessible.

SELECTION OF CITATIONS
SEARCH DETAIL