Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(2): 1320-1332, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36686927

ABSTRACT

The increasing production of neodymium-iron-boron (NdFeB) magnets for technological applications results in disposal problems. NdFeB magnets contain a significant quantity of rare earth elements (REEs). China is the largest REEs producer, but it applies quotas and increases the export prices of REEs. To address this issue, this study aims at investigating the recovery process of REEs from scrap NdFeB magnets. After oxidation of NdFeB magnet powders, selective leaching with nitric acid was carried out to achieve high-purity REE-rich leaching liquor. First, the oxidation kinetics of NdFeB powders was studied in detail to determine the oxidation temperature and duration. Afterwards, the effects of selective leaching parameters, including acid concentration, leaching temperature, stirring speed and solid/liquid ratio, were examined by analysis of variance (ANOVA) analysis based on Taguchi method. The most substantial parameters were assigned to be the temperature and solid/liquid ratio. Eventually, the dissolution kinetics were studied to propose a model for REEs. Several universal equations for dissolution kinetics were tested, and (1 - (1 - x) = k × tn) gives the best results for REEs. The findings show that the leaching process follows the shrinking core model. Activation energy was calculated to be 40.375 kJ mol-1 for REEs. As the last step, the iron dissolved during leaching was precipitated as hematite in the autoclave. The hematite precipitation experiments were performed based on the Box-Behnken design. The effect of precipitation parameters was investigated by ANOVA analysis, and the precipitation process was optimized using response surface methodology (RSM), which resulted in the minimum iron and maximum REEs content in the leach liquor.

2.
RSC Adv ; 12(48): 31478-31488, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36382150

ABSTRACT

NdFeB magnets are employed in various technological applications due to their outstanding magnetic properties, such as high maximum energy product, high remanence and high coercivity. Production of NdFeB has gathered more interest, therefore the demand for rare earth elements (REEs) has continuously increased. The recovery of REEs has become essential to satisfy this demand in recent years. In the present study, a promising flowsheet is proposed for REEs recovery from NdFeB magnets, as follows: (1) acid baking, (2) employment of ultrasound-assisted water leaching, (3) the production of rare earth oxides (RE oxides) by a solution combustion method, and (4) a calcination process. There are several problems in conventional precipitation such as loss of a high amount of metal during precipitation and use of a high amount of precipitation agents. It is worth mentioning that the consumed precipitation agents in the solution are not easily recyclable. This study aims especially to investigate the production of RE oxides from recycled NdFeB magnets by solution combustion as an alternative to conventional precipitation methods. In this way, impurities that may have come to the system from the precipitation agents were prevented. Moreover, in the production of RE oxides via the above-mentioned method, precipitation agents and filtration steps were not necessary.

3.
Materials (Basel) ; 15(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35454550

ABSTRACT

The Ni/Y2O3 catalyst showed high catalytic activity. Based on this, the aim of this study was to create Ni/Y2O3 nanocomposites powder with two innovative technologies, Ultrasonic Spray Pyrolysis (USP) and lyophilisation. In the USP process, thermal decomposition of the generated aerosols in an N2/H2 reduction atmosphere caused a complete decomposition of the nickel (II) nitrate to elemental Ni, which became trapped on the formed Y2O3 nanoparticles. The Ni/Y2O3 nanocomposite particles were captured via gas washing in an aqueous solution of polyvinylpyrrolidone (PVP) in collection bottles. PVP was chosen for its ability to stabilise nano-suspensions and as an effective cryoprotectant. Consequently, there was no loss or agglomeration of Ni/Y2O3 nanocomposite material during the lyophilisation process. The Ni/Y2O3 nanocomposite powder was analysed using ICP-MS, SEM-EDX, and XPS, which showed the impact of different precursor concentrations on the final Ni/Y2O3 nanocomposite particle composition. In a final step, highly concentrated Ni/Y2O3 nanocomposite ink (Ni/Y2O3 > 0.140 g/mL) and test coatings from this ink were prepared by applying them on a white matte photo paper sheet. The reflection curve of the prepared Ni/Y2O3 nanocomposite coating showed a local maximum at 440 nm with a value of 39% reflection. Given that Ni is located on the surface of the Ni/Y2O3 nanocomposite in the elemental state and according to the identified properties, tests of the catalytic properties of this coating will be performed in the future.

4.
Materials (Basel) ; 13(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861774

ABSTRACT

Nanoparticle properties are correlated to their size, size distribution, and shape; it is essential to accurately measure these features in the field of nanoscience. In this study, silver nanoparticles (AgNPs) were synthesized with the ultrasonic-spray-pyrolysis (USP) method from a water solution of silver nitrate. The synthesized AgNPs were characterized by Dynamic Light Scattering (DLS) analysis and Scanning Electron Microscopy (SEM) to reveal their size and size distribution. A search algorithm based on an image-processing technique to obtain particle size and particle-size distribution from SEM micrographs is proposed. In order to obtain more quantitative information and data with respect to the morphology of particles synthesized under different process parameters, SEM micrographs with a nonhomogeneous background contrast were examined via image-processing techniques in MATLAB. Due to the inhomogeneous contrast of SEM micrographs, defining an overall threshold value was insufficient in the detection of whole nanoparticles. Thus, subimages were directly created according to the maximum and minimum particle size specified by the user to determine local threshold values. The obtained results were automatically combined to represent both particle dimension and location in the SEM micrographs. We confirmed that the results of our DLS analysis, theoretical calculation, and image-processing technique were correlated with our expected results.

5.
Sci Rep ; 9(1): 7191, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31076593

ABSTRACT

Raising social awareness and environmental specifications on cyanide application force gold industry to search for alternative leaching reagents. Therefore, researchers worldwide investigate cyanide alternatives for gold recovery since several decades. Often the research activities cannot be compared directly, since different input materials and experimental conditions are used. Over the course of this study, different promising cyanide alternative reagents were investigated in terms of their capability of pure gold dissolution at different temperatures. All experiments took place under identical conditions by using uniform samples of 99.99% gold disks, to enable a comparability. Thiosulfate as one of the most promising reagent thiosulfate according to literature revealed an insufficient leaching behavior. The gold dissolution was hindered due to the formation of a sulfide passive layer. Also in the thiourea trials, a surface precipitation took place, though gold dissolution did not stop. The halogens iodine, bromine and the well-known gold solvent aqua regia dissolved gold very fast (up to ~1,000 mg·h-1·cm-2). Methanosulfonic acid (MSA) was not capable to extract any gold. The experiments were compared with cyanide trials at identical conditions. The average dissolution rate of investigated reagents at 25 °C shows following order: aqua regia > iodine > bromine > cyanide > thiourea > thiosulfate > MSA.

6.
Sci Rep ; 8(1): 5676, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29618774

ABSTRACT

The need of light weight alloys for future transportation industry puts Sc and Ti under a sudden demand. While these metals can bring unique and desired properties to alloys, lack of reliable sources brought forth a supply problem which can be solved by valorization of the secondary resources. Bauxite residue (red mud), with considerable Ti and Sc content, is a promising resource for secure supply of these metals. Due to drawbacks of the direct leaching route from bauxite residue, such as silica gel formation and low selectivity towards these valuable metals, a novel leaching process based on oxidative leaching conditions, aiming more efficient and selective leaching but also considering environmental aspects via lower acid consumption, was investigated in this study. Combination of hydrogen peroxide (H2O2) and sulfuric acid (H2SO4) was utilized as the leaching solution, where various acid concentrations, solid-to-liquid ratios, leaching temperatures and times were examined in a comparative manner. Leaching with 2.5 M H2O2: 2.5 M H2SO4 mixture at 90 °C for 30 min was observed to be the best leaching conditions with suppressed silica gel formation and the highest reported leaching efficiency with high S/L ratio for Sc and Ti; 68% and 91%; respectively.

7.
J Biomed Nanotechnol ; 8(3): 528-38, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22764424

ABSTRACT

We prepared 5 different fractions of nanoparticles from the gold scrap, by using a new technology, Ultrasonic Spray Pirolysis (USP). The aim of this study was to characterize the microstructure and cytotoxicity of the nanoparticles along with their immunomodulatory properties, using Concanavaline A (ConA)-treated rat splenocytes as a model of activated immune cells. Fractions 1 and 2, composed of pure gold nanoparticles, although non-cytotoxic, reduced cellular proliferation. Fraction 2, containing particles smaller in size and lesser agglomerated than fraction 1, up- and down-regulated the production of IL-2 and IL-10, respectively, by activated splenocytes. Fraction 3, containing nanoparticles composed of Au and up to 3 at.% Cu, was non-cytotoxic, but reduced IL-2 production and cell proliferation. Fractions 4 and 5, contaminated with alloying elements from the gold scrap, were cytotoxic. The extent of cytotoxicity and subsequent reduction of cytokine production, as well as the mode of cell death, depended on their composition. In conclusion, we showed that USP enables the synthesis of gold nanoparticles, which could be suitable for various biological applications, and that ConA-treated splenocytes represent a reliable model for fast and accurate evaluation of the immunotoxicological profiles of these particles. However, it is necessary to improve this technology and investigate further some of the immunomodulatory mechanisms using more specific immunological tests.


Subject(s)
Gold/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Spleen/drug effects , Spleen/immunology , Animals , Cytokines/immunology , Gases/chemistry , Gold/chemistry , Gold/radiation effects , Hot Temperature , Immunologic Factors/radiation effects , Industrial Waste , Male , Materials Testing , Nanoparticles/radiation effects , Rats , Sonication
8.
Environ Sci Pollut Res Int ; 14(7): 477-82, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18062479

ABSTRACT

BACKGROUND, AIM AND SCOPE: Electrocoagulation (EC) may be a potential answer to environmental problems dealing with water reuse and rational waste management. The aim of this research was to assess the feasibility of EC-process for industrial contaminated effluents from copper production, taking into consideration technical and economical factors. EC-technology claims to offer efficient removal rates for most types of wastewater impurities at low power consumption and without adding any precipitating agents. MATERIALS AND METHODS: Real wastewater from Saraka stream with high concentrations of heavy metals was provided by RTB-BOR, a Serbian copper mining and smelting complex. Runs were performed on a 10 l EC-reactor using aluminum plates as sacrificial electrodes and powered by a 40 A supply unit. Results concerning key factors like pH, conductivity and power consumption were measured in real time. Analysis of dissolved metal concentrations before and after treatment were carried out via ICP-OES and confirmed by an independent test via AAS. RESULTS: Several aspects were taken into account, including current density, conductivity, interfacial resistivity and reactor settings throughout the runs, in order to analyze all possible factors playing a role in neutralization and metal removal in real industrial wastewater. DISCUSSION: Electrode configurations and their effects on energy demand were discussed and exemplified based on fundamentals of colloidal and physical chemistry. CONCLUSIONS: Based on experimental data and since no precipitating agents were applied, the EC-process proved to be not only feasible and environmentally-friendly, but also a cost-effective technology RECOMMENDATIONS AND PERSPECTIVES: The EC-technology provides strategic guidelines for further research and development of sustainable water management processes. However, additional test series concerning continuous operation must be still performed in order to get this concept ready for future large-scale applications.


Subject(s)
Industrial Waste , Water Purification/methods , Copper/chemistry , Electric Conductivity , Electrodes , Feasibility Studies , Hydrogen-Ion Concentration , Metallurgy , Temperature , Water/chemistry , Water Movements
9.
Environ Sci Pollut Res Int ; 14(7): 518-22, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18062485

ABSTRACT

GOAL, SCOPE AND BACKGROUND: This paper is a part of the research work on 'Integrated treatment of industrial wastes towards prevention of regional water resources contamination - INTREAT' the project. It addresses the environmental pollution problems associated with solid and liquid waste/effluents produced by sulfide ore mining and metallurgical activities in the Copper Mining and Smelting Complex Bor (RTB-BOR), Serbia. However, since the minimum solubility for the different metals usually found in the polluted water occurs at different pH values and the hydroxide precipitates are amphoteric in nature, selective removal of mixed metals could be achieved as the multiple stage precipitation. For this reason, acid mine water had to be treated in multiple stages in a continuous precipitation system-cascade line reactor. MATERIALS AND METHODS: All experiments were performed using synthetic metal-bearing effluent with chemical a composition similar to the effluent from open pit, Copper Mining and Smelting Complex Bor (RTB-BOR). That effluent is characterized by low pH (1.78) due to the content of sulfuric acid and heavy metals, such as Cu, Fe, Ni, Mn, Zn with concentrations of 76.680, 26.130, 0.113, 11.490, 1.020 mg/dm3, respectively. The cascade line reactor is equipped with the following components: for feeding of effluents, for injection of the precipitation agent, for pH measurements and control, and for removal of the process gases. The precipitation agent was 1M NaOH. In each of the three reactors, a changing of pH and temperature was observed. In order to verify. efficiency of heavy metals removal, chemical analyses of samples taken at different pH was done using AES-ICP. RESULTS: Consumption of NaOH in reactors was 370 cm3, 40 cm3 and 80 cm3, respectively. Total time of the experiment was 4 h including feeding of the first reactor. The time necessary to achieve the defined pH value was 25 min for the first reactor and 13 min for both second and third reactors. Taking into account the complete process in the cascade line reactor, the difference between maximum and minimum temperature was as low as 6 degrees C. The quantity of solid residue in reactors respectively was 0.62 g, 2.05 g and 3.91 g. In the case of copper, minimum achieved concentration was 0.62 mg/dm3 at pH = 10.4. At pH = 4.50 content of iron has rapidly decreased to < 0.1 mg/dm3 and maintained constant at all higher pH values. That means that precipitation has already ended at pH=4.5 and maximum efficiency of iron removal was 99.53%. The concentration of manganese was minimum at pH value of 11.0. Minimum obtained concentration of Zn was 2.18 mg/dm3 at a pH value of 11. If pH value is higher than 11, Zn can be re-dissolved. The maximum efficiency of Ni removal reached 76.30% at a pH value of 10.4. DISCUSSION: Obtained results show that efficiency of copper, iron and manganese removal is very satisfactory (higher than 90%). The obtained efficiency of Zn and Ni removal is lower (72.30% and 76.31%, respectively). The treated effluent met discharge water standard according to The Council Directive 76/464/EEC on pollution caused by certain dangerous substances into the aquatic environment of the Community. Maximum changing of temperature during the whole process was 6 degrees C. CONCLUSION: This technology, which was based on inducing chemical precipitation of heavy metals is viable for selective removal of heavy metals from metal-bearing effluents in three reactor systems in a cascade line. RECOMMENDATIONS AND PERSPECTIVES: The worldwide increasing concern for the environment and guidelines regarding effluent discharge make their treatment necessary for safe discharge in water receivers. In the case where the effluents contain valuable metals, there is also an additional economic interest to recover these metals and to recycle them as secondary raw materials in different production routes.


Subject(s)
Industrial Waste , Metals, Heavy/chemistry , Water Purification , Water/chemistry , Chemical Precipitation , Copper/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Manganese/chemistry , Metallurgy , Nickel/chemistry , Temperature , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...