Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Polymers (Basel) ; 14(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35890602

ABSTRACT

While fused deposition modeling (FDM) and other relatively inexpensive 3D printing methods are nowadays used in many applications, the possible areas of using FDM-printed objects are still limited due to mechanical and thermal constraints. Applications for space, e.g., for microsatellites, are restricted by the usually insufficient heat resistance of the typical FDM printing materials. Printing high-temperature polymers, on the other hand, necessitates special FDM printers, which are not always available. Here, we show investigations of common polymers, processible on low-cost FDM printers, under elevated temperatures of up to 160 °C for single treatments. The polymers with the highest dimensional stability and mechanical properties after different temperature treatments were periodically heat-treated between -40 °C and +80 °C in cycles of 90 min, similar to the temperature cycles a microsatellite in the low Earth orbit (LEO) experiences. While none of the materials under investigation fully maintains its dimensions and mechanical properties, filled poly(lactic acid) (PLA) filaments were found most suitable for applications under these thermal conditions.

2.
Polymers (Basel) ; 14(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35215634

ABSTRACT

Carbon nanofibers are used for a broad range of applications, from nano-composites to energy storage devices. They are typically produced from electrospun poly(acrylonitrile) nanofibers by thermal stabilization and carbonization. The nanofiber mats are usually placed freely movable in an oven, which leads to relaxation of internal stress within the nanofibers, making them thicker and shorter. To preserve their pristine morphology they can be mechanically fixated, which may cause the nanofibers to break. In a previous study, we demonstrated that sandwiching the nanofiber mats between metal sheets retained their morphology during stabilization and incipient carbonization at 500 °C. Here, we present a comparative study of stainless steel, titanium, copper and silicon substrate sandwiches at carbonization temperatures of 500 °C, 800 °C and 1200 °C. Helium ion microscopy revealed that all metals mostly eliminated nanofiber deformation, whereas silicone achieved the best results in this regard. The highest temperatures for which the metals were shown to be applicable were 500 °C for silicon, 800 °C for stainless steel and copper, and 1200 °C for titanium. Fourier transform infrared and Raman spectroscopy revealed a higher degree of carbonization and increased crystallinity for higher temperatures, which was shown to depend on the substrate material.

3.
Environ Technol ; 43(9): 1340-1351, 2022 Apr.
Article in English | MEDLINE | ID: mdl-32975476

ABSTRACT

Marine macroalgae are cultivated for diverse applications, from biofuel and biogas to biofiltering, from food to cosmetics or pharmaceuticals. Since macroalgae cultivation does not compete with land-based food crops for the necessary arable land or fresh water, it can increase the possibilities of sustainably harvested biomass. New technologies permit even land-based growing of marine macroalgae, besides the more common coastal or offshore cultivation. All these technologies, however, raise the question of how to provide ideal cultivation conditions, especially for adherent macroalgae, and of how to harvest them economically and sustainably. While some reports about growing marine macroalgae on diverse textile materials, such as polyester ropes or polypropylene nets, can be found in the literature, we report here for the first time on the growth of a marine macroalga on knitted fabrics. In our study, Ectocarpus sp. was cultivated in shallow rectangular cultivation vessels on knitted fabrics of various materials and structures revealing a significant influence of both parameters. Undesired changes of the pH value in the cultivation system as well as foam generation were attributed to textile auxiliaries. Considering all these influences, the best-suited knitted fabrics were identified as open-pore structures from hairy yarns made partly or completely from natural fibres.


Subject(s)
Seaweed , Biofuels , Biomass , Fresh Water , Seaweed/chemistry , Textiles
4.
Materials (Basel) ; 14(21)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34772147

ABSTRACT

The effects of climate change are becoming increasingly clear, and the urgency of solving the energy and resource crisis has been recognized by politicians and society. One of the most important solutions is sustainable energy technologies. The problem with the state of the art, however, is that production is energy-intensive and non-recyclable waste remains after the useful life. For monocrystalline photovoltaics, for example, there are recycling processes for glass and aluminum, but these must rather be described as downcycling. The semiconductor material is not recycled at all. Another promising technology for sustainable energy generation is dye-sensitized solar cells (DSSCs). Although efficiency and long-term stability still need to be improved, the technology has high potential to complement the state of the art. DSSCs have comparatively low production costs and can be manufactured without toxic components. In this work, we present the world' s first experiment to test the recycling potential of non-toxic glass-based DSSCs in a melting test. The glass constituents were analyzed by optical emission spectrometry with inductively coupled plasma (ICP-OES), and the surface was examined by scanning electron microscopy energy dispersive X-ray (SEM-EDX). The glass was melted in a furnace and compared to a standard glass recycling process. The results show that the described DSSCs are suitable for glass recycling and thus can potentially circulate in a circular economy without a downcycling process. However, material properties such as chemical resistance, transparency or viscosity are not investigated in this work and need further research.

5.
Materials (Basel) ; 14(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34443208

ABSTRACT

Electrospun poly(acrylonitrile) (PAN) nanofibers are typical precursors of carbon nanofibers. During stabilization and carbonization, however, the morphology of pristine PAN nanofibers is not retained if the as-spun nanofiber mats are treated without an external mechanical force, since internal stress tends to relax, causing the whole mats to shrink significantly, while the individual fibers thicken and curl. Stretching the nanofiber mats during thermal treatment, in contrast, can result in fractures due to inhomogeneous stress. Previous studies have shown that stabilization and carbonization of PAN nanofibers electrospun on an aluminum substrate are efficient methods to retain the fiber mat dimensions without macroscopic cracks during heat treatment. In this work, we studied different procedures of mechanical fixation via metallic substrates during thermal treatment. The influence of the metallic substrate material as well as different methods of double-sided covering of the fibers, i.e., sandwiching, were investigated. The results revealed that sandwich configurations with double-sided metallic supports not only facilitate optimal preservation of the original fiber morphology but also significantly accelerate the carbonization process. It was found that unlike regularly carbonized nanofibers, the metal supports allow complete deoxygenation at low treatment temperature and that the obtained carbon nanofibers exhibit increased crystallinity.

6.
Polymers (Basel) ; 12(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353004

ABSTRACT

To overcome the long-term stability problems of dye-sensitized solar cells (DSSC) due to solvent evaporation and leakage, gelling the electrolyte with polymers is an appropriate option. Especially for future applications of textile-based DSSCs, which require cost-effective and environmentally friendly materials, such an improvement of the electrolyte is necessary. Therefore, the temporal progressions of efficiencies and fill factors of non-toxic glass-based DSSCs resulting from different gel electrolytes with poly(ethylene oxide) (PEO) are investigated over 52 days comparatively. Dimethyl sulfoxide (DMSO) proved to be a suitable non-toxic solvent for the proposed gel electrolyte without ionic liquids. A PEO concentration of 17.4 wt% resulted in an optimal compromise with a relatively high efficiency over the entire period. Lower concentrations resulted in higher efficiencies during the first days but in a poorer long-term stability, whereas a higher PEO concentration resulted in an overall lower efficiency. Solvent remaining in the gel electrolyte during application was found advantageous compared to previous solvent evaporation. In contrast to a commercial liquid electrolyte, the long-term stability regarding the efficiency was improved successfully with a similar fill factor and thus equal quality.

7.
Sci Rep ; 10(1): 14708, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32895411

ABSTRACT

Highly magnified micrographs are part of the majority of publications in materials science and related fields. They are often the basis for discussions and far-reaching conclusions on the nature of the specimen. In many cases, reviewers demand and researchers deliver only the bare minimum of micrographs to substantiate the research hypothesis at hand. In this work, we use heterogeneous poly(acrylonitrile) nanofiber nonwovens with embedded nanoparticles to demonstrate how an insufficient or biased micrograph selection may lead to erroneous conclusions. Different micrographs taken by transmission electron microscopy and helium ion microscopy with sometimes contradictory implications were analyzed and used as a basis for micromagnetic simulations. With this, we try to raise awareness for the possible consequences of cherry-picking for the reliability of scientific literature.

8.
Materials (Basel) ; 13(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861826

ABSTRACT

Electrospinning can be used to create nanofibers from diverse polymers in which also other materials can be embedded. Inclusion of magnetic nanoparticles, for example, results in preparation of magnetic nanofibers which are usually isotropically distributed on the substrate. One method to create a preferred direction is using a spinning cylinder as the substrate, which is not always possible, especially in commercial electrospinning machines. Here, another simple technique to partly align magnetic nanofibers is investigated. Since electrospinning works in a strong electric field and the fibers thus carry charges when landing on the substrate, using partly conductive substrates leads to a current flow through the conductive parts of the substrate which, according to Ampère's right-hand grip rule, creates a magnetic field around it. We observed that this magnetic field, on the other hand, can partly align magnetic nanofibers perpendicular to the borders of the current flow conductor. We report on the first observations of electrospinning magnetic nanofibers on partly conductive substrates with some of the conductive areas additionally being grounded, resulting in partly oriented magnetic nanofibers.

9.
Materials (Basel) ; 12(14)2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31311088

ABSTRACT

The mycelium of the edible mushroom Pleurotus ostreatus can be used for diverse technical applications, such as packaging materials or wastewater treatment, besides the more obvious use for nutrition. While P. ostreatus usually grows on sawdust, wood or similar materials, a former study investigated mycelium growth on different nanofiber mats. Here, we report on growing P. ostreatus on fabrics knitted from different materials, enabling the use of this mushroom in textile-based vertical farming. Our results underline that P. ostreatus grows similar on natural fibers and on synthetic fibers. The agar medium used to provide nutrients was found to support mycelium growth optimally when applied by dip-coating, suggesting that, in this way, P. ostreatus can also be grown on vertically aligned textile fabrics for vertical farming.

SELECTION OF CITATIONS
SEARCH DETAIL
...