Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 91(5)2017 03 01.
Article in English | MEDLINE | ID: mdl-27974569

ABSTRACT

Epidemic keratoconjunctivitis (EKC) is a severe, contagious ocular disease that affects 20 to 40 million individuals worldwide every year. EKC is mainly caused by six types of human adenovirus (HAdV): HAdV-8, -19, -37, -53, -54, and -56. Of these, HAdV-8, -19, and -37 use sialic acid-containing glycans as cellular receptors. αVß3, αVß5, and a few additional integrins facilitate entry and endosomal release of other HAdVs. With the exception of a few biochemical analyses indicating that HAdV-37 can interact physically with αVß5, little is known about the integrins used by EKC-causing HAdVs. Here, we investigated the overall integrin expression on human corneal cells and found expression of α2, α3, α6, αV, ß1, and ß4 subunits in human corneal in situ epithelium and/or in a human corneal epithelial (HCE) cell line but no or less accessible expression of α4, α5, ß3, or ß5. We also identified the integrins used by HAdV-37 through a series of binding and infection competition experiments and different biochemical approaches. Together, our data suggest that HAdV-37 uses αVß1 and α3ß1 integrins for infection of human corneal epithelial cells. Furthermore, to confirm the relevance of these integrins in the HAdV-37 life cycle, we developed a corneal multilayer tissue system and found that HAdV-37 infection correlated well with the patterns of αV, α3, and ß1 integrin expression. These results provide further insight into the tropism and pathogenesis of EKC-causing HAdVs and may be of importance for future development of new antiviral drugs.IMPORTANCE Keratitis is a hallmark of EKC, which is caused by six HAdV types (HAdV-8, -19, -37, -53, -54, and -56). HAdV-37 and some other HAdV types interact with integrin αVß5 in order to enter nonocular human cells. In this study, we found that αVß5 is not expressed on human corneal epithelial cells, thus proposing other host factors mediate corneal infection. Here, we first characterized integrin expression patterns on corneal tissue and corneal cells. Among the integrins identified, competition binding and infection experiments and biochemical assays pointed out αVß1 and α3ß1 to be of importance for HAdV-37 infection of corneal tissue. In the absence of a good animal model for EKC-causing HAdVs, we also developed an in vitro system with multilayer HCE cells and confirmed the relevance of the suggested integrins during HAdV-37 infection.


Subject(s)
Adenovirus Infections, Human/virology , Adenoviruses, Human/physiology , Integrin alpha3beta1/physiology , Receptors, Vitronectin/physiology , A549 Cells , Cornea/pathology , Cornea/virology , Humans , Receptors, Virus , Virus Attachment , Virus Internalization
2.
Org Biomol Chem ; 13(35): 9194-205, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26177934

ABSTRACT

Adenovirus type 37 (Ad37) is one of the principal agents responsible for epidemic keratoconjunctivitis (EKC), a severe ocular infection that remains without any available treatment. Recently, a trivalent sialic acid derivative (ME0322, Angew. Chem. Int. Ed., 2011, 50, 6519) was shown to function as a highly potent inhibitor of Ad37, efficiently preventing the attachment of the virion to the host cells and subsequent infection. Here, new trivalent sialic acid derivatives were designed, synthesized and their inhibitory properties against Ad37 infection of the human corneal epithelial cells were investigated. In comparison to ME0322, the best compound (17a) was found to be over three orders of magnitude more potent in a cell-attachment assay (IC50 = 1.4 nM) and about 140 times more potent in a cell-infection assay (IC50 = 2.9 nM). X-ray crystallographic analysis demonstrated a trivalent binding mode of all compounds to the Ad37 fiber knob. For the most potent compound ophthalmic toxicity in rabbits was investigated and it was concluded that repeated eye administration did not cause any adverse effects.


Subject(s)
Adenoviridae/drug effects , Adenoviridae/physiology , Cornea/cytology , Epithelial Cells/virology , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/pharmacology , Triazoles/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Click Chemistry , Drug Design , Epithelial Cells/drug effects , Humans , Male , Models, Molecular , Molecular Conformation , N-Acetylneuraminic Acid/analogs & derivatives , N-Acetylneuraminic Acid/chemical synthesis , Rabbits
3.
J Virol ; 85(21): 11283-90, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21880775

ABSTRACT

Coxsackievirus A24 variant (CVA24v) is a main causative agent of acute hemorrhagic conjunctivitis (AHC), which is a highly contagious eye infection. Previously it has been suggested that CVA24v uses sialic acid-containing glycoconjugates as attachment receptors on corneal cells, but the nature of these receptors is poorly described. Here, we set out to characterize and identify the cellular components serving as receptors for CVA24v. Binding and infection experiments using corneal cells treated with deglycosylating enzymes or metabolic inhibitors of de novo glycosylation suggested that the receptor(s) used by CVA24v are constituted by sialylated O-linked glycans that are linked to one or more cell surface proteins but not to lipids. CVA24v bound better to mouse L929 cells overexpressing human P-selectin glycoprotein ligand-1 (PSGL-1) than to mock-transfected cells, suggesting that PSGL-1 is a candidate receptor for CVA24v. Finally, binding competition experiments using a library of mono- and oligosaccharides mimicking known PSGL-1 glycans suggested that CVA24v binds to Neu5Acα2,3Gal disaccharides (Neu5Ac is N-acetylneuraminic acid). These results provide further insights into the early steps of the CVA24v life cycle.


Subject(s)
Enterovirus C, Human/physiology , Glycoconjugates/metabolism , Membrane Glycoproteins/metabolism , Receptors, Virus/metabolism , Sialic Acids/analysis , Virus Attachment , Animals , Cell Line , Corneal Keratocytes/virology , Glycoconjugates/analysis , Humans , Membrane Glycoproteins/genetics , Mice , Receptors, Virus/chemistry
4.
Nat Med ; 17(1): 105-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21151139

ABSTRACT

Adenovirus type 37 (Ad37) is a leading cause of epidemic keratoconjunctivitis (EKC), a severe and highly contagious ocular disease. Whereas most other adenoviruses infect cells by engaging CD46 or the coxsackie and adenovirus receptor (CAR), Ad37 binds previously unknown sialic acid-containing cell surface molecules. By glycan array screening, we show here that the receptor-recognizing knob domain of the Ad37 fiber protein specifically binds a branched hexasaccharide that is present in the GD1a ganglioside and that features two terminal sialic acids. Soluble GD1a glycan and GD1a-binding antibodies efficiently prevented Ad37 virions from binding and infecting corneal cells. Unexpectedly, the receptor is constituted by one or more glycoproteins containing the GD1a glycan motif rather than the ganglioside itself, as shown by binding, infection and flow cytometry experiments. Molecular modeling, nuclear magnetic resonance and X-ray crystallography reveal that the two terminal sialic acids dock into two of three previously established sialic acid-binding sites in the trimeric Ad37 knob. Surface plasmon resonance analysis shows that the knob-GD1a glycan interaction has high affinity. Our findings therefore form a basis for the design and development of sialic acid-containing antiviral drugs for topical treatment of EKC.


Subject(s)
Adenoviridae Infections/epidemiology , G(M1) Ganglioside/analogs & derivatives , Keratoconjunctivitis/virology , Receptors, Virus/physiology , Antiviral Agents/therapeutic use , Binding Sites , Cell Membrane/virology , Crystallography, X-Ray , Epithelium, Corneal/virology , G(M1) Ganglioside/chemistry , G(M1) Ganglioside/immunology , G(M1) Ganglioside/metabolism , G(M1) Ganglioside/physiology , Humans , Keratoconjunctivitis/drug therapy , Keratoconjunctivitis/epidemiology , Keratoconjunctivitis/immunology , Models, Molecular , Protein Binding , Sialic Acids/metabolism , Sialic Acids/therapeutic use , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...