Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1134304, 2023.
Article in English | MEDLINE | ID: mdl-37274747

ABSTRACT

Environmental pollutants are claimed to be major factors involved in the progressive decline of the fertility rate worldwide. Exposure to the heavy metal Cadmium (Cd) has been associated with reproductive toxicity due to its ionic mimicry. However, the possible direct accumulation of Cd in human sperm cells has been poorly investigated. In this study, we aimed to clarify the possible direct effect of Cd exposure on sperm function through the analysis of its cell accumulation. Semen samples from 30 male subjects residing in high environmental impact areas and adhering to the "Exposoma e Plurifocalità nella Prevenzione Oncologica" campaign for testis cancer prevention were compared with semen samples from 15 males residing in low exposure areas. Semen levels and cell Cd content were quantified by inductively coupled plasma (ICP) spectroscopy. Cell Cd distribution was assessed by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The impact of Cd on sperm function was evaluated by the in vitro exposure to the heavy metal, whilst possible scavenging approaches/agents were assessed. In addition to higher values of semen Cd, exposed subjects showed a reduction in total motile sperm fraction compared to not-exposed controls (59.6% ± 13.6% vs. 66.3% ± 7.3%, p = 0.037). Semen Cd levels were also significantly correlated with SEM-EDS signals of Cd detected on the head and neck of sperm (respectively p = 0.738, p < 0.001 and ρ = 0.465, p < 0.001). A total of 2 h of in vitro exposure to 0.5 µM Cd was associated with a significant reduction of sperm progressive motility. Scavenging approaches with either hypo-osmotic swelling or 10 µM reduced glutathione were ineffective in blunting cell Cd and restoring motility. The reduction of exposure levels appears to be the main approach to reducing the reproductive issues associated with Cd.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670549

ABSTRACT

The electrochemical preparation of arrays of copper ultramicrowires (CuUWs) by using porous membranes as templates is critically revisited, with the goal of obtaining cheap but efficient substrates for surface enhanced Raman spectroscopy (SERS). The role of the materials used for the electrodeposition is examined, comparing membranes of anodized aluminum oxide (AAO) vs. track-etched polycarbonate (PC) as well as copper vs. glassy carbon (GC) as electrode material. A voltammetric study performed on bare electrodes and potentiostatic tests on membrane coated electrodes allowed the optimization of the deposition parameters. The final arrays of CuUWs were obtained by chemical etching of the template, with NaOH for AAO and CH2Cl2 for PC. After total etching of the template, SERS spectra were recorded on CuUWs using benzenethiol as SERS probe with known spectral features. The CuUW substrates displayed good SERS properties, providing enhancement factor in the 103-104 range. Finally, it was demonstrated that higher Raman enhancement can be achieved when CuUWs are decorated with silver nanostars, supporting the formation of SERS active hot-spots at the bimetallic interface.

3.
Sensors (Basel) ; 20(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260737

ABSTRACT

Heavy metals ions (HMI), if not properly handled, used and disposed, are a hazard for the ecosystem and pose serious risks for human health. They are counted among the most common environmental pollutants, mainly originating from anthropogenic sources, such as agricultural, industrial and/or domestic effluents, atmospheric emissions, etc. To face this issue, it is necessary not only to determine the origin, distribution and the concentration of HMI but also to rapidly (possibly in real-time) monitor their concentration levels in situ. Therefore, portable, low-cost and high performing analytical tools are urgently needed. Even though in the last decades many analytical tools and methodologies have been designed to this aim, there are still several open challenges. Compared with the traditional analytical techniques, such as atomic absorption/emission spectroscopy, inductively coupled plasma mass spectrometry and/or high-performance liquid chromatography coupled with electrochemical or UV-VIS detectors, bio- and biomimetic electrochemical sensors provide high sensitivity, selectivity and rapid responses within portable and user-friendly devices. In this review, the advances in HMI sensing in the last five years (2016-2020) are addressed. Key examples of bio and biomimetic electrochemical, impedimetric and electrochemiluminescence-based sensors for Hg2+, Cu2+, Pb2+, Cd2+, Cr6+, Zn2+ and Tl+ are described and discussed.


Subject(s)
Ecosystem , Metals, Heavy , Biomimetics , Environmental Monitoring , Humans , Ions , Metals, Heavy/analysis , Risk Assessment
4.
Nanomaterials (Basel) ; 9(2)2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30691023

ABSTRACT

Electrochemical methods for nitrate detection are very attractive since they are suitable for in-field and decentralized monitoring. Copper electrodes are often used to this aim as this metal presents interesting electrocatalytic properties towards nitrate reduction. In this research, we study improvements in the electrochemical analysis of nitrate in natural water and food by taking advantage of the detection capabilities of ensembles of copper nanowire electrodes (CuWNEEs). These electrodes are prepared via template electrodeposition of copper within the nanopores of track-etched polycarbonate (PC) membranes. A critical step in the preparation of these sensors is the removal of the template. Here, we applied the combination of chemical etching with atmospheric plasma cleaning which proved suitable for improving the performance of the nanostructured copper electrode. Analytical results obtained with the CuWNEE sensor for nitrate analyses in river water samples compare satisfactorily with those achieved by standard chromatographic or spectroscopic methods. Experimental results concerning the application of the CuWNEEs for nitrate analysis in food samples are also presented and discussed, with focus on nitrate detection in leafy vegetables.

5.
Environ Sci Pollut Res Int ; 21(18): 10949-59, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24859696

ABSTRACT

Size segregated particulate samples of atmospheric aerosols in urban site of continental part of Balkans were collected during 6 months in 2008. Six stages impactor in the size ranges: Dp ≤ 0.49 µm, 0.49 < Dp ≤ 0.95 µm, 0.95 < Dp ≤ 1.5 µm, 1.5 < Dp ≤ 3.0 µm, 3.0 < Dp ≤ 7.2 µm, and 7.2 < Dp ≤ 10.0 µm was applied for sampling. ICP-MS was used to quantify elements: Al, As, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Na, Ni, Mg, Mn, Pb, Sb, V, and Zn. Two main groups of elements were investigated: (1) K, V, Ni, Zn, Pb, As, and Cd with high domination in nuclei mode indicating the combustion processes as a dominant sources and (2) Al, Fe, Ca, Mg, Na, Cr, Ga, Co, and Li in coarse mode indicating mechanical processes as their main origin. The strictly crustal origin is for Mg, Fe, Ca, and Co while for As, Cd, K, V, Ni, Cu, Pb, and Zn dominates the anthropogenic influence. The PCA analysis has shown that main contribution is of resuspension (PC1, σ(2) ≈ 30 %) followed by traffic (PC2, σ(2) ≈ 20 %) that are together contributing around 50 % of elements in the investigated urban aerosol. The EF model shows that major origin of Cd, K, V, Ni, Cu, Pb, Zn, and As in the fine mode is from the anthropogenic sources while increase of their contents in the coarse particles indicates their deposition from the atmosphere and soil contamination. This approach is useful for the assessment of the local resuspension influence on element's contents in the aerosol and also for the evaluation of the historical pollution of soil caused by deposition of metals from the atmosphere.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Atmosphere/chemistry , Cities , Environmental Monitoring/methods , Metals/analysis , Particle Size , Principal Component Analysis , Serbia
6.
J Environ Sci (China) ; 24(11): 1954-65, 2012.
Article in English | MEDLINE | ID: mdl-23534229

ABSTRACT

The Venice Lagoon is exposed to atmospheric pollutants from industrial activities, thermoelectric power plants, petrochemical plants, incinerator, domestic heating, ship traffic, glass factories and vehicular emissions on the mainland. In 2005, construction began on the mobile dams (MOSE), one dam for each channel connecting the lagoon to the Adriatic Sea as a barrier against high tide. These construction works could represent an additional source of pollutants. PM10 samples were taken on random days between 2007 and 2010 at three different sites: Punta Sabbioni, Chioggia and Malamocco, located near the respective dam construction worksites. Chemical analyses of V, Cr, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Tl and Pb in PM10 samples were performed by Inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) and results were used to identify the main aerosol sources. The correlation of measured data with meteorology, and source apportionment, failed to highlight a contribution specifically associated to the emissions of the MOSE construction works. The comparison of the measurements at the three sites showed a substantial homogeneity of metal concentrations in the area. Source apportionment with principal component analysis (PCA) and positive matrix factorization (PMF) showed that a four principal factors model could describe the sources of metals in PM10. Three of them were assigned to specific sources in the area and one was characterised as a source of mixed origin (anthropogenic and crustal). A specific anthropogenic source of PM10 rich in Ni and Cr, active at the Chioggia site, was also identified.


Subject(s)
Aerosols/chemistry , Air Pollutants/chemistry , Metals/chemistry , Particle Size , Particulate Matter , Water Pollutants, Chemical/chemistry , Atmosphere , Environmental Monitoring/methods , Italy , Seawater
7.
Chemosphere ; 76(8): 1017-22, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19524283

ABSTRACT

Atmospheric transport is an important route by which pollutants are conveyed from the continents to both coastal and open sea. The role of aerosol deposition in the transport of polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) and polybromodiphenyls ethers (PBDEs) to water and soil systems has been evaluated by measuring their concentrations in wet and dry depositions to the Venice Lagoon. The organic micropollutant flux data indicate that they contribute to the total deposition flux in different ways through wet and dry deposition, showing that the prevalent contribution derives from wet deposition. The fluxes calculated for PBDEs, showed the prevalence of 47, 99, 100 and 183 congeners, both in dry and wet fluxes. With regard to PCBs, the flux of summation operatorPCB for wet deposition is in the same order of magnitude of the diffusive flux at the air-water interface. The PAH fluxes obtained in the present study are similar to those obtained in previous studies on the atmospheric bulk deposition to the Venice Lagoon. The ratios between Phe/Ant and Fl/Py indicate that the pollutants sources are pyrolytic, deriving from combustion fuels.


Subject(s)
Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Seasons , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...