Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5667, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704604

ABSTRACT

Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of gut bacteria versus non-bacterial insults on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N-glycanase 1 (Pngl) in a specific intestinal cell type leads to gut barrier defects, causing starvation and JNK overactivation. These abnormalities, along with loss of Pngl in enterocytes and fat body, result in Foxo overactivation, leading to hyperactive innate immune response and lipid catabolism and thereby contributing to lethality. Germ-free rearing of Pngl mutants rescued their developmental delay but not lethality. However, raising Pngl mutants on isocaloric, fat-rich diets partially rescued lethality. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the lethality caused by loss of Pngl is primarily mediated through non-bacterial induction of immune and metabolic abnormalities.


Subject(s)
Drosophila , Lipolysis , Animals , Drosophila/genetics , Adipose Tissue , Enterocytes , Lipids
2.
bioRxiv ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37066398

ABSTRACT

Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of infectious versus non-infectious mechanisms on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N -glycanase 1 (Pngl) leads to gut barrier defects, which cause starvation and increased JNK activity. These defects result in Foxo overactivation, which induces a hyperactive innate immune response and lipid catabolism, thereby contributing to lethality associated with loss of Pngl . Notably, germ-free rearing of Pngl mutants did not rescue lethality. In contrast, raising Pngl mutants on isocaloric, fat-rich diets improved animal survival in a dosage-dependent manner. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the immune and metabolic consequences of loss of Pngl are primarily mediated through non-infectious mechanisms.

3.
Nat Commun ; 12(1): 1366, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33649320

ABSTRACT

Cancer stem cells drive disease progression and relapse in many types of cancer. Despite this, a thorough characterization of these cells remains elusive and with it the ability to eradicate cancer at its source. In acute myeloid leukemia (AML), leukemic stem cells (LSCs) underlie mortality but are difficult to isolate due to their low abundance and high similarity to healthy hematopoietic stem cells (HSCs). Here, we demonstrate that LSCs, HSCs, and pre-leukemic stem cells can be identified and molecularly profiled by combining single-cell transcriptomics with lineage tracing using both nuclear and mitochondrial somatic variants. While mutational status discriminates between healthy and cancerous cells, gene expression distinguishes stem cells and progenitor cell populations. Our approach enables the identification of LSC-specific gene expression programs and the characterization of differentiation blocks induced by leukemic mutations. Taken together, we demonstrate the power of single-cell multi-omic approaches in characterizing cancer stem cells.


Subject(s)
Clone Cells/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Single-Cell Analysis , Transcriptome/genetics , Biomarkers, Tumor/genetics , Bone Marrow/pathology , Cell Differentiation , Gene Expression Regulation, Leukemic , Genome , Hematopoietic Stem Cells/pathology , Humans , K562 Cells , Mitochondria/genetics , Mutation/genetics
4.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165588, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31733337

ABSTRACT

The cytoplasmic peptide:N-glycanase (Ngly1) is a de-N-glycosylating enzyme that cleaves N-glycans from misfolded glycoproteins and is involved in endoplasmic reticulum-associated degradation. The recent discovery of NGLY1-deficiency, which causes severe systemic symptoms, drew attention to the physiological function of Ngly1 in mammals. While several studies have been carried out to reveal the physiological necessity of Ngly1, the semi-lethal nature of Ngly1-deficient animals made it difficult to analyze its function in adults. In this study, we focus on the physiological function of Ngly1 in liver (hepatocyte)-specific Ngly1-deficient mice generated using the cre-loxP system. We found that hepatocyte-specific Ngly1-deficient mice showed abnormal hepatocyte nuclear size/morphology with aging but did not show other notable defects in unstressed conditions. This nuclear phenotype did not appear to be related to the function of the only gene currently reported to rescue Ngly1-deficient murine lethality so far, endo-ß-N-acetylglucosaminidase. We also found that under a high fructose diet induced stress, the hepatocyte-specific Ngly1-deletion resulted in liver transaminases elevation and increased lipid droplet accumulation. We showed that the processing and localization of the transcription factor, nuclear factor erythroid 2-like 1 (Nfe2l1), was impaired in the Ngly1-deficient hepatocytes. Therefore, Nfe2l1, at least partially, contributes to the phenotypes observed in hepatocyte-specific Ngly1-deficient mice. Our results indicate that Ngly1 plays important roles in the adult liver impacting nuclear morphology and lipid metabolism. Hepatocyte-specific Ngly1-deficient mice could thus serve as a valuable animal model for assessing in vivo efficacy of drugs and/or treatment for NGLY1-deficiency.


Subject(s)
Congenital Disorders of Glycosylation/metabolism , Lipid Metabolism/physiology , Liver/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/deficiency , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Stress, Physiological/physiology , Animals , Cell Line , Cytoplasm/metabolism , Diet , Disease Models, Animal , Endoplasmic Reticulum-Associated Degradation/physiology , Female , Fructose/metabolism , Glycosylation , Hepatocytes/metabolism , Male , Mice , Phenotype
5.
Cell Rep ; 27(13): 3770-3779.e7, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31242411

ABSTRACT

FACT (facilitates chromatin transcription) is an evolutionarily conserved histone chaperone that was initially identified as an activity capable of promoting RNA polymerase II (Pol II) transcription through nucleosomes in vitro. In this report, we describe a global analysis of FACT function in Pol II transcription in Drosophila. We present evidence that loss of FACT has a dramatic impact on Pol II elongation-coupled processes including histone H3 lysine 4 (H3K4) and H3K36 methylation, consistent with a role for FACT in coordinating histone modification and chromatin architecture during Pol II transcription. Importantly, we identify a role for FACT in the maintenance of promoter-proximal Pol II pausing, a key step in transcription activation in higher eukaryotes. These findings bring to light a broader role for FACT in the regulation of Pol II transcription.


Subject(s)
Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Histones/metabolism , Protein Processing, Post-Translational , RNA Polymerase II/metabolism , Transcription Elongation, Genetic , Animals , Carrier Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Histones/genetics , RNA Polymerase II/genetics
6.
Nucleic Acids Res ; 45(7): 4051-4067, 2017 04 20.
Article in English | MEDLINE | ID: mdl-27928057

ABSTRACT

We recently identified the 4-pyridinone-benzisothiazole carboxamide compound 1C8 as displaying strong anti-HIV-1 potency against a variety of clinical strains in vitro. Here we show that 1C8 decreases the expression of HIV-1 and alters splicing events involved in the production of HIV-1 mRNAs. Although 1C8 was designed to be a structural mimic of the fused tetracyclic indole compound IDC16 that targets SRSF1, it did not affect the splice site shifting activity of SRSF1. Instead, 1C8 altered splicing regulation mediated by SRSF10. Depleting SRSF10 by RNA interference affected viral splicing and, like 1C8, decreased expression of Tat, Gag and Env. Incubating cells with 1C8 promoted the dephosphorylation of SRSF10 and increased its interaction with hTra2ß, a protein previously implicated in the control of HIV-1 RNA splicing. While 1C8 affects the alternative splicing of cellular transcripts controlled by SRSF10 and hTra2ß, concentrations greater than those needed to inhibit HIV-1 replication were required to elicit significant alterations. Thus, the ability of 1C8 to alter the SRSF10-dependent splicing of HIV-1 transcripts, with minor effects on cellular splicing, supports the view that SRSF10 may be used as a target for the development of new anti-viral agents.


Subject(s)
Alternative Splicing/drug effects , Anti-HIV Agents/pharmacology , Benzothiazoles/pharmacology , Cell Cycle Proteins/metabolism , HIV-1/drug effects , Niacinamide/analogs & derivatives , Repressor Proteins/metabolism , Serine-Arginine Splicing Factors/metabolism , Virus Replication/drug effects , Anti-HIV Agents/chemistry , Benzothiazoles/chemistry , Cells, Cultured , HIV-1/genetics , HIV-1/metabolism , HIV-1/physiology , HeLa Cells , Humans , Niacinamide/chemistry , Niacinamide/pharmacology , RNA Precursors/metabolism , RNA Splicing Factors/metabolism , RNA, Messenger/metabolism , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...