Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
3.
Sci Rep ; 8(1): 12462, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30127535

ABSTRACT

Aggregation of α-synuclein, the hallmark of α-synucleinopathies such as Parkinson's disease, occurs in various glycosphingolipidoses. Although α-synuclein aggregation correlates with deficiencies in the lysosomal degradation of glycosphingolipids (GSL), the mechanism(s) involved in this aggregation remains unclear. We previously described the aggregation of α-synuclein in Krabbe's disease (KD), a neurodegenerative glycosphingolipidosis caused by lysosomal deficiency of galactosyl-ceramidase (GALC) and the accumulation of the GSL psychosine. Here, we used a multi-pronged approach including genetic, biophysical and biochemical techniques to determine the pathogenic contribution, reversibility, and molecular mechanism of aggregation of α-synuclein in KD. While genetic knock-out of α-synuclein reduces, but does not completely prevent, neurological signs in a mouse model of KD, genetic correction of GALC deficiency completely prevents α-synuclein aggregation. We show that psychosine forms hydrophilic clusters and binds the C-terminus of α-synuclein through its amino group and sugar moiety, suggesting that psychosine promotes an open/aggregation-prone conformation of α-synuclein. Dopamine and carbidopa reverse the structural changes of psychosine by mediating a closed/aggregation-resistant conformation of α-synuclein. Our results underscore the therapeutic potential of lysosomal correction and small molecules to reduce neuronal burden in α-synucleinopathies, and provide a mechanistic understanding of α-synuclein aggregation in glycosphingolipidoses.


Subject(s)
Leukodystrophy, Globoid Cell/metabolism , Leukodystrophy, Globoid Cell/pathology , Psychosine/metabolism , alpha-Synuclein/metabolism , Animals , Brain/metabolism , Cell Line , Disease Models, Animal , Dopamine/metabolism , Galactosylceramidase/metabolism , Humans , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism
4.
Mol Ther ; 26(3): 874-889, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29433937

ABSTRACT

We report a global adeno-associated virus (AAV)9-based gene therapy protocol to deliver therapeutic galactosylceramidase (GALC), a lysosomal enzyme that is deficient in Krabbe's disease. When globally administered via intrathecal, intracranial, and intravenous injections to newborn mice affected with GALC deficiency (twitcher mice), this approach largely surpassed prior published benchmarks of survival and metabolic correction, showing long-term protection of demyelination, neuroinflammation, and motor function. Bone marrow transplantation, performed in this protocol without immunosuppressive preconditioning, added minimal benefits to the AAV9 gene therapy. Contrasting with other proposed pre-clinical therapies, these results demonstrate that achieving nearly complete correction of GALC's metabolic deficiencies across the entire nervous system via gene therapy can have a significant improvement to behavioral deficits, pathophysiological changes, and survival. These results are an important consideration for determining the safest and most effective manner for adapting gene therapy to treat this leukodystrophy in the clinic.


Subject(s)
Carbohydrate Metabolism , Galactosylceramidase/genetics , Galactosylceramidase/metabolism , Genetic Therapy , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/metabolism , Phenotype , Animals , Autonomic Pathways/metabolism , Autonomic Pathways/pathology , Autonomic Pathways/ultrastructure , Axons/metabolism , Axons/pathology , Axons/ultrastructure , Behavior, Animal , Brain/metabolism , Dependovirus/genetics , Disease Models, Animal , Female , Gene Expression , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Genetic Vectors/pharmacokinetics , Leukodystrophy, Globoid Cell/diagnosis , Leukodystrophy, Globoid Cell/therapy , Male , Mice , Myelin Sheath/metabolism , Myelin Sheath/pathology , Myelin Sheath/ultrastructure , Tissue Distribution , Transduction, Genetic , Treatment Outcome
5.
PLoS One ; 13(2): e0193438, 2018.
Article in English | MEDLINE | ID: mdl-29481565

ABSTRACT

α-Synuclein aggregation has been linked to Gaucher's disease (GD) and Krabbe's disease (KD), lysosomal conditions affecting glycosphingolipid metabolism. α-Synuclein pathology has been directly attributed to the dysregulation of glycosphingolipids in both conditions, specifically to increased galactosylsphingosine (psychosine) content in the context of KD. Furthermore, the gene (GALC) coding for the psychosine degrading enzyme galactosylceramidase (GALC), has recently been identified as a risk loci for Parkinson's disease. However, it is unknown if changes in psychosine metabolism and GALC activity in the context of the aging human brain correlate with Parkinson's disease. We investigated psychosine accumulation and GALC activity in the aging brain using fresh frozen post-mortem tissue from Parkinson's (PD, n = 10), Alzheimer's (AD, n = 10), and healthy control patients (n = 9), along with tissue from neuropsychiatric patients (schizophrenia, bipolar disorder and depression, n = 15 each). An expanded mutational analysis of PD (n = 20), AD (n = 10), and healthy controls (n = 30) examined if PD was correlated with carriers for severe GALC mutations. Psychosine content within the cerebral cortex of PD patients was elevated above control patients. Within all patients, psychosine displayed a significant (p<0.05) and robust regional distribution in the brain with higher levels in the white matter and substantia nigra. A mutational analysis revealed an increase in the incidence of severe GALC mutations within the PD patient population compared to the cohorts of Alzheimer's patients and healthy controls tested. In addition to α-synuclein pathology identified in the KD brain, control patients identified as GALC mutational carriers or possessing a GALC pathogenic variant had evidence of α-synuclein pathology, indicating a possible correlation between α-synuclein pathology and dysregulation of psychosine metabolism in the adult brain. Carrier status for GALC mutations and prolonged exposure to increased psychosine could contribute to α-synuclein pathology, supporting psychosine metabolism by galactosylceramidase as a risk factor for Parkinson's disease.


Subject(s)
Aging/metabolism , Brain/metabolism , Galactosylceramidase/metabolism , Parkinson Disease/metabolism , Psychosine/genetics , Psychosine/metabolism , Adult , Aged , Aged, 80 and over , Aging/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Autopsy , Cohort Studies , Female , Humans , Male , Mental Disorders/genetics , Mental Disorders/metabolism , Middle Aged , Mutation , Parkinson Disease/genetics , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...