Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739798

ABSTRACT

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Subject(s)
Peptides , Plasmodium falciparum , Protozoan Proteins , Ubiquitin Thiolesterase , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Plasmodium falciparum/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Humans , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/antagonists & inhibitors , Antimalarials/pharmacology , Antimalarials/chemistry , Ubiquitin/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/drug therapy
2.
Cell ; 187(4): 814-830.e23, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38364788

ABSTRACT

Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains, and greater morphological diversity. Here, we report that RNA-level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show that RNLTR12-int-encoded RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin) in rodents. RNLTR12-int-like sequences (which we name RetroMyelin) are found in all jawed vertebrates, and we further demonstrate their function in regulating myelination in two different vertebrate classes (zebrafish and frogs). Our study therefore suggests that retroviral endogenization played a prominent role in the emergence of vertebrate myelin.


Subject(s)
Myelin Sheath , Retroelements , Animals , Gene Expression , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Retroelements/genetics , RNA/metabolism , Zebrafish/genetics , Anura
3.
New Phytol ; 240(6): 2353-2371, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37823344

ABSTRACT

Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit ß1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan ß-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and ß-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that ß-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.


Subject(s)
Arabidopsis , Humans , Arabidopsis/metabolism , Coffee/metabolism , Xylans/metabolism , Oligosaccharides/metabolism , Cell Wall/metabolism , Sugars/metabolism
4.
Front Plant Sci ; 14: 1213250, 2023.
Article in English | MEDLINE | ID: mdl-37615028

ABSTRACT

A large English population of the temperate tuberous Greater Butterfly-orchid, Platanthera chlorantha, was monitored through a 16-year period. Each June the number of flowering plants was counted and 60 flowering plants were measured in situ for four morphological traits, selected for both ease of measurement and their contrasting contributions to the life history of the species. Trait data were tested annually in pairwise combinations for individual plants, before mean values throughout the study period were regressed and cross-correlated against each other and against local data for four meteorological parameters. Labellar spur length proved to be more constrained than either flower number or stem height, and rarely yielded statistically significant correlations with other traits, whereas the three remaining traits reliably showed modest but significant correlations. Mean values and coefficients of variation differed only modestly among years and showed few of any meaningful trends. Spring rainfall and insolation had no detectable effect on traits of plants flowering that June; instead, they impacted on trait expression during the following year, presumably as a result of differential resourcing of replacement tubers formed during the previous year. High spring rainfall in year t-1 increased leaf area and stem height in year t, whereas the widely fluctuating number of flowering plants was highest in years immediately following those characterised by relatively dry and/or sunny springs. The "decision" to flower is taken during the previous summer, though it may be modified through winter/spring abortion of above-ground organs. The proportion of the population electing to flower is the only measured parameter that impacts significantly on annual reproductive output, emphasising the under-rated difficulty of evolving through directional selection. Any attempt to predict the behaviour of plant species in response to climate change must integrate information on demography with that on life history, habitat preference and intimate symbioses.

5.
Plant J ; 113(5): 1004-1020, 2023 03.
Article in English | MEDLINE | ID: mdl-36602010

ABSTRACT

Xylan is the most abundant non-cellulosic polysaccharide in grass cell walls, and it has important structural roles. The name glucuronoarabinoxylan (GAX) is used to describe this variable hemicellulose. It has a linear backbone of ß-1,4-xylose (Xyl) residues that may be substituted with α-1,2-linked (4-O-methyl)-glucuronic acid (GlcA), α-1,3-linked arabinofuranose (Araf), and sometimes acetylation at the O-2 and/or O-3 positions. The role of these substitutions remains unclear, although there is increasing evidence that they affect the way xylan interacts with other cell wall components, particularly cellulose and lignin. Here, we used substitution-dependent endo-xylanase enzymes to investigate the variability of xylan substitution in grass culm cell walls. We show that there are at least three different types of xylan: (i) an arabinoxylan with evenly distributed Araf substitutions without GlcA (AXe); (ii) a glucuronoarabinoxylan with clustered GlcA modifications (GAXc); and (iii) a highly substituted glucuronoarabinoxylan (hsGAX). Immunolocalization of AXe and GAXc in Brachypodium distachyon culms revealed that these xylan types are not restricted to a few cell types but are instead widely detected in Brachypodium cell walls. We hypothesize that there are functionally specialized xylan types within the grass cell wall. The even substitutions of AXe may permit folding and binding on the surface of cellulose fibrils, whereas the more complex substitutions of the other xylans may support a role in the matrix and interaction with other cell wall components.


Subject(s)
Cellulose , Xylans , Xylans/metabolism , Cellulose/metabolism , Lignin/metabolism , Glucuronic Acid/metabolism , Xylose/metabolism , Cell Wall/metabolism
6.
Nucleic Acids Res ; 50(20): 11895-11915, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36408906

ABSTRACT

We previously identified RBPMS as a master regulator of alternative splicing in differentiated smooth muscle cells (SMCs). RBPMS is transcriptionally downregulated during SMC dedifferentiation, but we hypothesized that RBPMS protein activity might be acutely downregulated by post-translational modifications. Publicly available phosphoproteomic datasets reveal that Thr113 and Thr118 immediately adjacent to the RRM domain are commonly both phosphorylated. An RBPMS T113/118 phosphomimetic T/E mutant showed decreased splicing regulatory activity both in transfected cells and in a cell-free in vitro assay, while a non-phosphorylatable T/A mutant retained full activity. Loss of splicing activity was associated with a modest reduction in RNA affinity but significantly reduced RNA binding in nuclear extract. A lower degree of oligomerization of the T/E mutant might cause lower avidity of multivalent RNA binding. However, NMR analysis also revealed that the T113/118E peptide acts as an RNA mimic which can loop back and antagonize RNA-binding by the RRM domain. Finally, we identified ERK2 as the most likely kinase responsible for phosphorylation at Thr113 and Thr118. Collectively, our data identify a potential mechanism for rapid modulation of the SMC splicing program in response to external signals during the vascular injury response and atherogenesis.


Subject(s)
Myocytes, Smooth Muscle , RNA Splicing , Phosphorylation , Myocytes, Smooth Muscle/metabolism , Muscle, Smooth/metabolism , RNA/metabolism , Cells, Cultured
7.
Plant Cell ; 34(11): 4600-4622, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35929080

ABSTRACT

Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned ß-galactoglucomannan (ß-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of ß-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that ß-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis ß-GGM synthesis mutants show no obvious growth defects, genetic crosses between ß-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of ß-GGM and XyG in PCWs.


Subject(s)
Arabidopsis , Xylans , Arabidopsis/genetics , Cell Wall/chemistry , Cellulose
8.
J Mol Biol ; 434(16): 167682, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35697294

ABSTRACT

Disordered scaffold proteins provide multivalent landing pads that, via a series of embedded Short Linear Motifs (SLiMs), bring together the components of a complex to orchestrate precise spatial and temporal regulation of cellular processes. One such protein is AKAP5 (previously AKAP79), which contains SLiMs that anchor PKA and Calcineurin, and recruit substrate (the TRPV1 receptor). Calcineurin is anchored to AKAP5 by a well-characterised PxIxIT SLiM. Here we show, using a combination of biochemical and biophysical approaches, that the Calcineurin PxIxIT-binding groove also recognises several hitherto unknown lower-affinity SLiMs in addition to the PxIxIT motif. We demonstrate that the assembly is in reality a complex system with conserved SLiMs spanning a wide affinity range. The capture is analogous to that seen for many DNA-binding proteins that have a weak non-specific affinity for DNA outside the canonical binding site, but different in that it involves (i) two proteins, and (ii) hydrophobic rather than electrostatic interactions. It is also compatible with the requirement for both stable anchoring of the enzyme and responsive downstream signalling. We conclude that the AKAP5 C-terminus is enriched in lower-affinity/mini-SLiMs that, together with the canonical SLiM, maintain a structurally disordered but tightly regulated signalosome.


Subject(s)
A Kinase Anchor Proteins , Calcineurin , Intrinsically Disordered Proteins , Phosphoric Monoester Hydrolases , A Kinase Anchor Proteins/chemistry , Calcineurin/chemistry , Humans , Intrinsically Disordered Proteins/chemistry , Phosphoric Monoester Hydrolases/chemistry , Protein Binding , Signal Transduction
9.
Mol Psychiatry ; 26(2): 556-567, 2021 02.
Article in English | MEDLINE | ID: mdl-31758091

ABSTRACT

Parkinson's disease (PD) is an α-synucleinopathy characterized by the progressive loss of specific neuronal populations. Here, we develop a novel approach to transvascularly deliver proteins of complex quaternary structures, including α-synuclein preformed fibrils (pff). We show that a single systemic administration of α-synuclein pff triggers pathological transformation of endogenous α-synuclein in non-transgenic rats, which leads to neurodegeneration in discrete brain regions. Specifically, pff-exposed animals displayed a progressive deterioration in gastrointestinal and olfactory functions, which corresponded with the presence of cellular pathology in the central and enteric nervous systems. The α-synuclein pathology generated was both time dependent and region specific. Interestingly, the most significant neuropathological changes were observed in those brain regions affected in the early stages of PD. Our data therefore demonstrate for the first time that a single, transvascular administration of α-synuclein pff can lead to selective regional neuropathology resembling the premotor stage of idiopathic PD. Furthermore, this novel delivery approach could also be used to deliver a range of other pathogenic, as well as therapeutic, protein cargos transvascularly to the brain.


Subject(s)
Enteric Nervous System , Parkinson Disease , Animals , Brain/metabolism , Enteric Nervous System/metabolism , Humans , Neurons/metabolism , alpha-Synuclein/metabolism
10.
J Med Chem ; 63(21): 12786-12798, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33119282

ABSTRACT

CK2α is a ubiquitous, well-studied kinase that is a target for small-molecule inhibition, for treatment of cancers. While many different classes of adenosine 5'-triphosphate (ATP)-competitive inhibitors have been described for CK2α, they tend to suffer from significant off-target activity and new approaches are needed. A series of inhibitors of CK2α has recently been described as allosteric, acting at a previously unidentified binding site. Given the similarity of these inhibitors to known ATP-competitive inhibitors, we have investigated them further. In our thorough structural and biophysical analyses, we have found no evidence that these inhibitors bind to the proposed allosteric site. Rather, we report crystal structures, competitive isothermal titration calorimetry (ITC) and NMR, hydrogen-deuterium exchange (HDX) mass spectrometry, and chemoinformatic analyses that all point to these compounds binding in the ATP pocket. Comparisons of our results and experimental approach with the data presented in the original report suggest that the primary reason for the disparity is nonspecific inhibition by aggregation.


Subject(s)
Protein Kinase Inhibitors/chemistry , Adenosine Triphosphate/metabolism , Allosteric Regulation , Allosteric Site , Binding, Competitive , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/genetics , Casein Kinase II/metabolism , Crystallography, X-Ray , Deuterium Exchange Measurement , Humans , Ligands , Molecular Dynamics Simulation , Naphthyridines/chemistry , Naphthyridines/metabolism , Nuclear Magnetic Resonance, Biomolecular , Phenazines , Protein Binding , Protein Kinase Inhibitors/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
11.
EMBO J ; 39(18): e104185, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32705708

ABSTRACT

Regions of the genome with the potential to form secondary DNA structures pose a frequent and significant impediment to DNA replication and must be actively managed in order to preserve genetic and epigenetic integrity. How the replisome detects and responds to secondary structures is poorly understood. Here, we show that a core component of the fork protection complex in the eukaryotic replisome, Timeless, harbours in its C-terminal region a previously unappreciated DNA-binding domain that exhibits specific binding to G-quadruplex (G4) DNA structures. We show that this domain contributes to maintaining processive replication through G4-forming sequences, and exhibits partial redundancy with an adjacent PARP-binding domain. Further, this function of Timeless requires interaction with and activity of the helicase DDX11. Loss of both Timeless and DDX11 causes epigenetic instability at G4-forming sequences and DNA damage. Our findings indicate that Timeless contributes to the ability of the replisome to sense replication-hindering G4 formation and ensures the prompt resolution of these structures by DDX11 to maintain processive DNA synthesis.


Subject(s)
Cell Cycle Proteins/metabolism , DEAD-box RNA Helicases/metabolism , DNA Damage , DNA Helicases/metabolism , DNA Replication , G-Quadruplexes , Intracellular Signaling Peptides and Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line , DEAD-box RNA Helicases/genetics , DNA Helicases/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Protein Domains
12.
Nat Chem Biol ; 16(4): 423-429, 2020 04.
Article in English | MEDLINE | ID: mdl-31907373

ABSTRACT

The most abundant member of the collagen protein family, collagen I (also known as type I collagen; COL1), is composed of one unique (chain B) and two similar (chain A) polypeptides that self-assemble with one amino acid offset into a heterotrimeric triple helix. Given the offset, chain B can occupy either the leading (BAA), middle (ABA) or trailing (AAB) position of the triple helix, yielding three isomeric biomacromolecules with different protein recognition properties. Despite five decades of intensive research, there is no consensus on the position of chain B in COL1. Here, three triple-helical heterotrimers that each contain a putative von Willebrand factor (VWF) and discoidin domain receptor (DDR) recognition sequence from COL1 were designed with chain B permutated in all three positions. AAB demonstrated a strong preference for both VWF and DDR, and also induced higher levels of cellular DDR phosphorylation. Thus, we resolve this long-standing mystery and show that COL1 adopts an AAB register.


Subject(s)
Collagen Type I/chemistry , Collagen Type I/metabolism , Collagen/chemistry , Amino Acid Sequence , Amino Acids , Collagen/metabolism , Computational Biology/methods , Humans , Models, Molecular , Peptides/chemistry , Protein Conformation
14.
Biotechnol Biofuels ; 12: 109, 2019.
Article in English | MEDLINE | ID: mdl-31080516

ABSTRACT

BACKGROUND: Grass glucuronoarabinoxylan (GAX) substitutions can inhibit enzymatic degradation and are involved in the interaction of xylan with cell wall cellulose and lignin, factors which contribute to the recalcitrance of biomass to saccharification. Therefore, identification of xylan characteristics central to biomass biorefining improvement is essential. However, the task of assessing biomass quality is complicated and is often hindered by the lack of a reference for a given crop. RESULTS: In this study, we created a reference library, expressed in glucose units, of Miscanthus sinensis GAX stem and leaf oligosaccharides, using DNA sequencer-Assisted Saccharide analysis in high throughput (DASH), supported by liquid chromatography (LC), nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Our analysis of a number of grass species highlighted variations in substitution type and frequency of stem and leaf GAX. In miscanthus, for example, the ß-Xylp-(1 → 2)-α-Araf-(1 → 3) side chain is more abundant in leaf than stem. CONCLUSIONS: The reference library allows fast identification and comparison of GAX structures from different plants and tissues. Ultimately, this reference library can be used in directing biomass selection and improving biorefining.

15.
Essays Biochem ; 63(1): 147-156, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30940742

ABSTRACT

Chromatin comprises proteins, DNA and RNA, and its function is to condense and package the genome in a way that allows the necessary transactions such as transcription, replication and repair to occur in a highly organised and regulated manner. The packaging of chromatin is often thought of in a hierarchical fashion starting from the most basic unit of DNA packaging, the nucleosome, to the condensation of nucleosomal 'beads on a string' by linker histones to form the 30-nm fibre and eventually large chromatin domains. However, a picture of a more heterogeneous, dynamic and liquid-like assembly is emerging, in which intrinsically disordered proteins (IDPs) and proteins containing intrinsically disordered regions (IDRs) play a central role. Disorder features at all levels of chromatin organisation, from the histone tails, which are sites of extensive post-translational modification (PTM) that change the fate of the underlying genomic information, right through to transcription hubs, and the recently elucidated roles of IDPs and IDRs in the condensation of large regions of the genome through liquid-liquid phase separation.


Subject(s)
DNA-Binding Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Nucleosomes/metabolism , Animals , DNA-Binding Proteins/chemistry , Humans , Intrinsically Disordered Proteins/chemistry , Nucleosomes/chemistry , Protein Binding , Protein Domains , Protein Processing, Post-Translational
16.
Nat Microbiol ; 3(11): 1314-1326, 2018 11.
Article in English | MEDLINE | ID: mdl-30349080

ABSTRACT

Glycans are major nutrients for the human gut microbiota (HGM). Arabinogalactan proteins (AGPs) comprise a heterogenous group of plant glycans in which a ß1,3-galactan backbone and ß1,6-galactan side chains are conserved. Diversity is provided by the variable nature of the sugars that decorate the galactans. The mechanisms by which nutritionally relevant AGPs are degraded in the HGM are poorly understood. Here we explore how the HGM organism Bacteroides thetaiotaomicron metabolizes AGPs. We propose a sequential degradative model in which exo-acting glycoside hydrolase (GH) family 43 ß1,3-galactanases release the side chains. These oligosaccharide side chains are depolymerized by the synergistic action of exo-acting enzymes in which catalytic interactions are dependent on whether degradation is initiated by a lyase or GH. We identified two GHs that establish two previously undiscovered GH families. The crystal structures of the exo-ß1,3-galactanases identified a key specificity determinant and departure from the canonical catalytic apparatus of GH43 enzymes. Growth studies of Bacteroidetes spp. on complex AGP revealed 3 keystone organisms that facilitated utilization of the glycan by 17 recipient bacteria, which included B. thetaiotaomicron. A surface endo-ß1,3-galactanase, when engineered into B. thetaiotaomicron, enabled the bacterium to utilize complex AGPs and act as a keystone organism.


Subject(s)
Bacterial Proteins/metabolism , Bacteroides thetaiotaomicron/enzymology , Glycoside Hydrolases/metabolism , Mucoproteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacteroides thetaiotaomicron/classification , Bacteroides thetaiotaomicron/growth & development , Bacteroides thetaiotaomicron/metabolism , Crystallography, X-Ray , Gastrointestinal Microbiome/physiology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Humans , Oligosaccharides/metabolism , Plant Proteins/metabolism , Substrate Specificity
17.
Proc Natl Acad Sci U S A ; 115(47): 11964-11969, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30301810

ABSTRACT

Disordered proteins play an essential role in a wide variety of biological processes, and are often posttranslationally modified. One such protein is histone H1; its highly disordered C-terminal tail (CH1) condenses internucleosomal linker DNA in chromatin in a way that is still poorly understood. Moreover, CH1 is phosphorylated in a cell cycle-dependent manner that correlates with changes in the chromatin condensation level. Here we present a model system that recapitulates key aspects of the in vivo process, and also allows a detailed structural and biophysical analysis of the stages before and after condensation. CH1 remains disordered in the DNA-bound state, despite its nanomolar affinity. Phase-separated droplets (coacervates) form, containing higher-order assemblies of CH1/DNA complexes. Phosphorylation at three serine residues, spaced along the length of the tail, has little effect on the local properties of the condensate. However, it dramatically alters higher-order structure in the coacervate and reduces partitioning to the coacervate phase. These observations show that disordered proteins can bind tightly to DNA without a disorder-to-order transition. Importantly, they also provide mechanistic insights into how higher-order structures can be exquisitely sensitive to perturbation by posttranslational modifications, thus broadening the repertoire of mechanisms that might regulate chromatin and other macromolecular assemblies.


Subject(s)
Histones/chemistry , Histones/metabolism , Animals , Chromatin/metabolism , Chromatin Assembly and Disassembly/physiology , DNA/chemistry , DNA-Binding Proteins , Humans , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation , Phosphorylation , Protein Binding , Protein Conformation , Protein Processing, Post-Translational
18.
Nat Microbiol ; 3(2): 210-219, 2018 02.
Article in English | MEDLINE | ID: mdl-29255254

ABSTRACT

The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.


Subject(s)
Bacteroides/metabolism , Colon/microbiology , Diet , Pectins/metabolism , Polysaccharides/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroides/enzymology , Bacteroides/genetics , Bacteroides/growth & development , Genes, Bacterial/genetics , Glycoside Hydrolases , Hexuronic Acids , Humans , Mutagenesis, Site-Directed , Plant Cells/metabolism
19.
Nat Plants ; 3(11): 859-865, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28993612

ABSTRACT

Xylan and cellulose are abundant polysaccharides in vascular plants and essential for secondary cell wall strength. Acetate or glucuronic acid decorations are exclusively found on even-numbered residues in most of the glucuronoxylan polymer. It has been proposed that this even-specific positioning of the decorations might permit docking of xylan onto the hydrophilic face of a cellulose microfibril 1-3 . Consequently, xylan adopts a flattened ribbon-like twofold screw conformation when bound to cellulose in the cell wall 4 . Here we show that ESKIMO1/XOAT1/TBL29, a xylan-specific O-acetyltransferase, is necessary for generation of the even pattern of acetyl esters on xylan in Arabidopsis. The reduced acetylation in the esk1 mutant deregulates the position-specific activity of the xylan glucuronosyltransferase GUX1, and so the even pattern of glucuronic acid on the xylan is lost. Solid-state NMR of intact cell walls shows that, without the even-patterned xylan decorations, xylan does not interact normally with cellulose fibrils. We conclude that the even pattern of xylan substitutions seen across vascular plants enables the interaction of xylan with hydrophilic faces of cellulose fibrils, and is essential for development of normal plant secondary cell walls.


Subject(s)
Arabidopsis/metabolism , Cell Wall/metabolism , Cellulose/metabolism , Plant Cells/metabolism , Xylans/metabolism , Acetylation , Acetyltransferases/metabolism , Arabidopsis/enzymology , Arabidopsis Proteins/metabolism , Glycosyltransferases/metabolism , Mass Spectrometry , Membrane Proteins
20.
Proteins ; 84(11): 1681-1689, 2016 11.
Article in English | MEDLINE | ID: mdl-27488615

ABSTRACT

Clostridium perfringens spores employ two peptidoglycan lysins to degrade the spore cortex during germination. SleC initiates cortex hydrolysis to generate cortical fragments that are degraded further by the muramidase SleM. Here, we present the crystal structure of the C. perfringens S40 SleM protein at 1.8 Å. SleM comprises an N-terminal catalytic domain that adopts an irregular α/ß-barrel fold that is common to GH25 family lysozymes, plus a C-terminal fibronectin type III domain. The latter is involved in forming the SleM dimer that is evident in both the crystal structure and in solution. A truncated form of SleM that lacks the FnIII domain shows reduced activity against spore sacculi indicating that this domain may have a role in facilitating the position of substrate with respect to the enzyme's active site. Proteins 2016; 84:1681-1689. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bacterial Proteins/chemistry , Clostridium perfringens/chemistry , Muramidase/chemistry , Peptidoglycan/chemistry , Spores, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cloning, Molecular , Clostridium perfringens/enzymology , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Fibronectin Type III Domain , Gene Expression , Hydrolysis , Models, Molecular , Muramidase/genetics , Muramidase/metabolism , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...