Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 73(8): 600-617, 2023 08.
Article in English | MEDLINE | ID: mdl-37506216

ABSTRACT

The authors present protocols for making fast, accurate, 3D velocity measurements in the stacks of coal-fired power plants. The measurements are traceable to internationally-recognized standards; therefore, they provide a rigorous basis for measuring and/or regulating the emissions from stacks. The authors used novel, five-hole, hemispherical, differential-pressure probes optimized for non-nulling (no-probe rotation) measurements. The probes resist plugging from ash and water droplets. Integrating the differential pressures for only 5 seconds determined the axial velocity Va with an expanded relative uncertainty Ur(Va) ≤ 2% of the axial velocity at the probe's location, the flow's pitch (α) and yaw (ß) angles with expanded uncertainties U(α) = U(ß) = 1 °, and the static pressure ps with Ur(ps) = 0.1% of the static pressure. This accuracy was achieved 1) by calibrating each probe in a wind tunnel at 130, strategically-chosen values of (Va, α, ß) spanning the conditions found in the majority of stacks (|α| ≤ 20 °; |ß| ≤ 40 °; 4.5 m/s ≤ Va ≤27 m/s), and 2) by using a long-forgotten definition of the pseudo-dynamic pressure that scales with the dynamic pressure. The resulting calibration functions span the probe-diameter Reynolds number range from 7,600 to 45,000.Implications: The continuous emissions monitoring systems (CEMS) that measure the flue gas flow rate in coal-fired power plant smokestacks are calibrated (at least) annually by a velocity profiling method. The stack axial velocity profile is measured by traversing S-type pitot probes (or one of the other EPA-sanctioned pitot probes) across two orthogonal, diametric chords in the stack cross-section. The average area-weighted axial velocity calculated from the pitot traverse quantifies the accuracy of the CEMS flow monitor. Therefore, the flow measurement accuracy of coal-fired power plants greenhouse gas (GHG) emissions depends on the accuracy of pitot probe velocity measurements. Coal-fired power plants overwhelmingly calibrate CEMS flow monitors using S-type pitot probes. Almost always, stack testers measure the velocity without rotating or nulling the probe (i.e., the non-nulling method). These 1D non-nulling velocity measurements take significantly less time than the corresponding 2D nulling measurements (or 3D nulling measurements for other probe types). However, the accuracy of the 1D non-nulling velocity measurements made using S-type probes depends on the pitch and yaw angles of the flow. Measured axial velocities are accurate at pitch and yaw angles near zero, but the accuracy degrades at larger pitch and yaw angles.The authors developed a 5-hole hemispherical pitot probe that accurately measures the velocity vector in coal-fired smokestacks without needing to rotate or null the probe. This non-nulling, 3D probe is designed with large diameter pressure ports to prevent water droplets (or particulates) from obstructing its pressure ports when applied in stack flow measurement applications. This manuscript presents a wind tunnel calibration procedure to determine the non-nulling calibration curves for 1) dynamic pressure; 2) pitch angle; 3) yaw angle; and 4) static pressure. These calibration curves are used to determine axial velocities from 6 m/s to 27 m/s, yaw angles between ±40°, and pitch angles between ±20°. The uncertainties at the 95% confidence limit for axial velocity, yaw angle, and pitch angle are 2% (or less), 1°, and 1°, respectively. Therefore, in contrast to existing EPA-sanctioned probes, the non-nulling hemispherical probe provides fast, low uncertainty velocity measurements independent of the pitch and yaw angles of the stack flow.


Subject(s)
Coal , Power Plants , Calibration , Environmental Monitoring/methods
2.
J Res Natl Inst Stand Technol ; 111(5): 373-84, 2006.
Article in English | MEDLINE | ID: mdl-27274939

ABSTRACT

We are developing an instrument, the Geometry Measuring Machine (GEMM), to measure the profile errors of aspheric and free form optical surfaces, with measurement uncertainties near 1 nm. Using GEMM, an optical profile is reconstructed from local curvatures of a surface, which are measured at points on the optic's surface. We will describe a prototype version of GEMM, its repeatability with time, a measurements registry practice, and the calibration practice needed to make nanometer resolution comparisons with other instruments. Over three months, the repeatability of GEMM is 3 nm rms, and is based on the constancy of the measured profile of an elliptical mirror with a radius of curvature of about 83 m. As a demonstration of GEMM's capabilities for curvature measurement, profiles of that same mirror were measured with GEMM and the NIST Moore M-48 coordinate measuring machine. Although the methods are far different, two reconstructed profiles differ by 22 nm peak-to-valley, or 6 nm rms. This comparability clearly demonstrates that with appropriate calibration, our prototype of the GEMM can measure complex-shaped optics.

3.
J Res Natl Inst Stand Technol ; 102(6): 647-676, 1997.
Article in English | MEDLINE | ID: mdl-27805114

ABSTRACT

The calculation of uncertainty for a measurement is an effort to set reasonable bounds for the measurement result according to standardized rules. Since every measurement produces only an estimate of the answer, the primary requisite of an uncertainty statement is to inform the reader of how sure the writer is that the answer is in a certain range. This report explains how we have implemented these rules for dimensional calibrations of nine different types of gages: gage blocks, gage wires, ring gages, gage balls, roundness standards, optical flats indexing tables, angle blocks, and sieves.

SELECTION OF CITATIONS
SEARCH DETAIL
...