Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 20(7): e1012258, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968291

ABSTRACT

The practical application of new single molecule protein sequencing (SMPS) technologies requires accurate estimates of their associated sequencing error rates. Here, we describe the development and application of two distinct parameter estimation methods for analyzing SMPS reads produced by fluorosequencing. A Hidden Markov Model (HMM) based approach, extends whatprot, where we previously used HMMs for SMPS peptide-read matching. This extension offers a principled approach for estimating key parameters for fluorosequencing experiments, including missed amino acid cleavages, dye loss, and peptide detachment. Specifically, we adapted the Baum-Welch algorithm, a standard technique to estimate transition probabilities for an HMM using expectation maximization, but modified here to estimate a small number of parameter values directly rather than estimating every transition probability independently. We demonstrate a high degree of accuracy on simulated data, but on experimental datasets, we observed that the model needed to be augmented with an additional error type, N-terminal blocking. This, in combination with data pre-processing, results in reasonable parameterizations of experimental datasets that agree with controlled experimental perturbations. A second independent implementation using a hybrid of DIRECT and Powell's method to reduce the root mean squared error (RMSE) between simulations and the real dataset was also developed. We compare these methods on both simulated and real data, finding that our Baum-Welch based approach outperforms DIRECT and Powell's method by most, but not all, criteria. Although some discrepancies between the results exist, we also find that both approaches provide similar error rate estimates from experimental single molecule fluorosequencing datasets.


Subject(s)
Algorithms , Markov Chains , Sequence Analysis, Protein , Sequence Analysis, Protein/methods , Proteins/chemistry , Computational Biology/methods , Single Molecule Imaging/methods , Computer Simulation
2.
bioRxiv ; 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37745461

ABSTRACT

The need to accurately survey proteins and their modifications with ever higher sensitivities, particularly in clinical settings with limited samples, is spurring development of new single molecule proteomics technologies. Fluorosequencing is one such highly parallelized single molecule peptide sequencing platform, based on determining the sequence positions of select amino acid types within peptides to enable their identification and quantification from a reference database. Here, we describe substantial improvements to fluorosequencing, including identifying fluorophores compatible with the sequencing chemistry, mitigating dye-dye interactions through the use of extended polyproline linkers, and developing an end-to-end workflow for sample preparation and sequencing. We demonstrate by fluorosequencing peptides in mixtures and identifying a target neoantigen from a database of decoy MHC peptides, highlighting the potential of the technology for high sensitivity clinical applications.

3.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37502879

ABSTRACT

The practical application of new single molecule protein sequencing (SMPS) technologies requires accurate estimates of their associated sequencing error rates. Here, we describe the development and application of two distinct parameter estimation methods for analyzing SMPS reads produced by fluorosequencing. A Hidden Markov Model (HMM) based approach, extends whatprot, where we previously used HMMs for SMPS peptide-read matching. This extension offers a principled approach for estimating key parameters for fluorosequencing experiments, including missed amino acid cleavages, dye loss, and peptide detachment. Specifically, we adapted the Baum-Welch algorithm, a standard technique to estimate transition probabilities for an HMM using expectation maximization, but modified here to estimate a small number of parameter values directly rather than estimating every transition probability independently, which should help prevent overfitting. We demonstrate a high degree of accuracy on simulated data, but on experimental datasets, we observed that the model needed to be augmented with an additional error type, N-terminal blocking. This, in combination with data pre-processing, results in reasonable parameterizations of experimental datasets that agree with controlled experimental perturbations. A second independent implementation using a hybrid of DIRECT and Powell's method to reduce the root mean squared error (RMSE) between simulations and the real dataset was also developed. We compare these methods on both simulated and real data, finding that our Baum-Welch based approach outperforms DIRECT and Powell's method by most, but not all, criteria. Although some discrepancies between the results exist, we also find that both approaches provide similar error rate estimates from experimental single molecule fluorosequencing datasets.

4.
Inorg Chem ; 57(12): 6865-6872, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29845860

ABSTRACT

A challenging goal in nanotechnology is the precise and programmable arrangement of specific elements in nanosystems in the three-dimensional space. The use of ligand-modified nucleic acids represents an accurate and selective tool to achieve this goal when it comes to metal ion organization. The synthesis of peptide nucleic acid (PNA) monomers that contain ligands instead of nucleobases makes possible the creation of metal-mediated alternative base pairs and triplets at specific locations in PNA duplexes and triplexes, respectively. We report the formation of four- and six-coordinate metal complexes between PNA triplexes modified with 2,2'-bipyridine (Bpy) or 8-hydroxyquinoline (Q) ligands and 3d metal ions. These metal complexes function as alternative base triplets or pairs in that they increase the thermal stability of the triplexes if the stability constants of the metal complexes are relatively high. The increase in the triplex melting temperature correlates with the stability constants of the metal complexes with ligand-containing PNA determined by UV-vis titrations. The metal complexes coordinate two or three ligands although three bidentate ligands are in close proximity of each other within a triplex. Metal coordination to ligand-modified PNA triplexes was further studied by electron paramagnetic resonance (EPR) spectroscopy and circular dichrosim (CD) spectroscopy. EPR spectroscopy indicated the formation of a square planar [CuQ2] complex between Cu2+ and Q-containing PNA triplex. Taken together, the spectroscopic results indicate that in the presence of 1 equiv of Fe2+ or Ni2+ the majority, but not all, of the Bpy-containing PNA triplexes contain [MBpy3] complexes, with a minority of them being metal free. We attribute this behavior to a supramolecular chelate effect exerted by the triplex, which favors the formation of tris-ligand complexes, that is balanced by the steric interactions between the metal complex and the adjacent nucleobase triplets, which decrease the stability of the complex and triplex. In contrast, the very high stability of square planar [MQ2] complexes of Cu2+ and Ni2+ leads to formation of bis-ligand complexes instead of tris-ligand complexes with Q3-containing PNA triplexes. The metal-containing PNA triplexes have a terminal l-lysine and adopt a left-handed chiral structure in solution. The handedness of the PNA triplex determines that of the metal complexes formed with the Bpy-containing PNA triplexes.


Subject(s)
DNA/chemistry , Metals/chemistry , Peptide Nucleic Acids/chemistry , 2,2'-Dipyridyl/chemistry , Ligands , Models, Molecular , Nucleic Acid Conformation , Oxyquinoline/chemistry , Temperature
5.
Inorg Chem ; 56(20): 12094-12097, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-28945087

ABSTRACT

The radical bridged compound [(Ni(TPMA))2-µ-bmtz•-](BF4)3·3CH3CN (bmtz = 3,6-bis(2'-pyrimidyl)-1,2,4,5-tetrazine, TPMA = tris(2-pyridylmethyl)amine) exhibits strong ferromagnetic exchange between the S = 1 NiII centers and the bridging S = 1/2 bmtz radical with J = 96 ± 5 cm-1 (-2JNi-radSNiSrad). DFT calculations support the existence of strong ferromagnetic exchange.

6.
Inorg Chem ; 55(11): 5215-26, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27159412

ABSTRACT

It was shown previously (J. Am. Chem. Soc. 2014, 136, 10846) that bubbling of O2 into a solution of Fe(II)(BDPP) (H2BDPP = 2,6-bis[[(S)-2-(diphenylhydroxymethyl)-1-pyrrolidinyl]methyl]pyridine) in tetrahydrofuran at -80 °C generates a high-spin (SFe = (5)/2) iron(III) superoxo adduct, 1. Mössbauer studies revealed that 1 is an exchange-coupled system, [Formula: see text], where SR = (1)/2 is the spin of the superoxo radical, of which the spectra were not well enough resolved to determine whether the coupling was ferromagnetic (S = 3 ground state) or antiferromagnetic (S = 2). The glass-forming 2-methyltetrahydrofuran solvent yields highly resolved Mössbauer spectra from which the following data have been extracted: (i) the ground state of 1 has S = 3 (J < 0); (ii) |J| > 15 cm(-1); (iii) the zero-field-splitting parameters are D = -1.1 cm(-1) and E/D = 0.02; (iv) the major component of the electric-field-gradient tensor is tilted ≈7° relative to the easy axis of magnetization determined by the MS = ±3 and ±2 doublets. The excited-state MS = ±2 doublet yields a narrow parallel-mode electron paramagnetic resonance signal at g = 8.03, which was used to probe the magnetic hyperfine splitting of (17)O-enriched O2. A theoretical model that considers spin-dependent electron transfer for the cases where the doubly occupied π* orbital of the superoxo ligand is either "in" or "out" of the plane defined by the bent Fe-OO moiety correctly predicts that 1 has an S = 3 ground state, in contrast to the density functional theory calculations for 1, which give a ground state with both the wrong spin and orbital configuration. This failure has been traced to a basis set superposition error in the interactions between the superoxo moiety and the adjacent five-membered rings of the BDPP ligand and signals a fundamental problem in the quantum chemistry of O2 activation.

7.
Inorg Chem ; 53(24): 13070-7, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25456858

ABSTRACT

Two Fe(II) complexes, {[(tpma)Fe(µ-CN)]4}X4 (X = ClO4(-) (1a), BF4(-) (1b); tpma = tris(2-pyridylmethyl)amine), were prepared by reacting the {Fe(tpma)}(2+) building block with (Bu4N)CN. The crystal structures of 1a and 1b feature a tetranuclear cation composed of cyanide-bridged Fe(II) ions, each capped with a tetradentate tpma ligand. The Fe4(µ-CN)4 core of the complex is strongly distorted, assuming a butterfly-like geometry. Both complexes exhibit gradual temperature-driven spin crossover (SCO) associated with the high-spin (HS) ↔ low-spin (LS) transition at two out of four metal centers. The evolution of HS and LS Fe(II) ions with temperature was followed by a combination of X-ray crystallography, magnetic measurements, and Mössbauer spectroscopy. Only the Fe(II) ions surrounded by six N atoms undergo the SCO. A comparison of the temperature-dependent SCO curves for the samples stored under solvent and the dried samples shows that the former exhibit a much more abrupt SCO. This finding was interpreted in terms of the increased structural disorder and decreased crystallinity caused by the loss of the interstitial solvent molecules in the dried samples.

8.
J Am Chem Soc ; 136(31): 10846-9, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25036460

ABSTRACT

O2 bubbling into a THF solution of Fe(II)(BDPP) (1) at -80 °C generates a reversible bright yellow adduct 2. Characterization by resonance Raman and Mössbauer spectroscopy provides complementary insights into the nature of 2. The former shows a resonance-enhanced vibration at 1125 cm(-1), which can be assigned to the ν(O-O) of a bound superoxide, while the latter reveals the presence of a high-spin iron(III) center that is exchange-coupled to the superoxo ligand, like the Fe(III)-O2(-) pair found for the O2 adduct of 4-nitrocatechol-bound homoprotocatechuate 2,3-dioxygenase. Lastly, 2 oxidizes dihydroanthracene to anthracene, supporting the notion that Fe(III)-O2(-) species can carry out H atom abstraction from a C-H bond to initiate the 4-electron oxidation of substrates proposed for some nonheme iron enzymes.


Subject(s)
Iron/chemistry , Magnets/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...