Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506712

ABSTRACT

PURPOSE: The importance of cellular context to the synergy of DNA Damage Response (DDR) targeted agents is important for tumors with mutations in DDR pathways, but less well-established for tumors driven by oncogenic transcription factors. In this study, we exploit the widespread transcriptional dysregulation of the EWS-FLI1 transcription factor to identify an effective DDR targeted combination therapy for Ewing Sarcoma (ES). EXPERIMENTAL DESIGN: We used matrix drug screening to evaluate synergy between a DNA-PK inhibitor (M9831) or an ATR inhibitor (berzosertib) and chemotherapy. The combination of berzosertib and cisplatin was selected for broad synergy, mechanistically evaluated for ES selectivity, and optimized for in vivo schedule. RESULTS: Berzosertib combined with cisplatin demonstrates profound synergy in multiple ES cell lines at clinically achievable concentrations. The synergy is due to loss of expression of the ATR downstream target CHEK1, loss of cell cycle checkpoints, and mitotic catastrophe. Consistent with the goals of the project, EWS-FLI1 drives the expression of CHEK1 and five other ATR pathway members. The loss of CHEK1 expression is not due to transcriptional repression and instead caused by degradation coupled with suppression of protein translation. The profound synergy is realized in vivo with a novel optimized schedule of this combination in subsets of ES models leading to durable complete responses in 50% of animals bearing two different ES xenografts. CONCLUSION: These data exploit EWS-FLI1 driven alterations in cell context to broaden the therapeutic window of berzosertib and cisplatin to establish a promising combination therapy and a novel in vivo schedule.

2.
Biochem Pharmacol ; 158: 217-228, 2018 12.
Article in English | MEDLINE | ID: mdl-30352234

ABSTRACT

RAS is the most commonly mutated driver of tumorigenesis, seen in about 30% of all cancer cases. There is a subset of tumors termed RAS-driven cancers in which RAS mutation or overactivation is evident, including as much as 95% in pancreatic and 50% in colon cancer. RAS is a family of small membrane bound GTPases that act as a signaling node to control both normal and cancer biology. Since the discovery of RAS' overall prominence in many tumor types and specifically in RAS-dependent cancers, it has been an obvious therapeutic target for drug development. However, RAS has proved a very elusive target, and after a few prominent RAS targeted drugs failed in clinical trials after decades of research, RAS was termed "undruggable" and research in this field was greatly hampered. An increase in knowledge about basic RAS biology has led to a resurgence in the generation of novel therapeutics targeting RAS signaling utilizing various and distinct approaches. These new drugs target RAS activation directly, block downstream signaling effectors and inhibit proper post-translational processing and trafficking/recycling of RAS. This review will cover how these new drugs were developed and how they have fared in preclinical and early phase clinical trials.


Subject(s)
Antineoplastic Agents/administration & dosage , Genes, ras/physiology , Molecular Targeted Therapy/trends , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Genes, ras/drug effects , Humans , Molecular Targeted Therapy/methods , Neoplasms/genetics
3.
Biochem Biophys Res Commun ; 495(3): 2264-2269, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29274778

ABSTRACT

Increased expression of the chemokine CX3CL1 and its sole receptor, CX3CR1 have been correlated with poor pancreatic cancer patient survival and time to recurrence, as well as with pancreatic perineural invasion. We have previously shown that metastasis of prostate and breast cancer is in part driven by CX3CL1, and have developed small molecule inhibitors against the CX3CR1 receptor that diminish metastatic burden. Here we ask if inhibition of this chemokine receptor affects the phenotype of PDAC tumor cells. Our findings demonstrate that motility, invasion, and contact-independent growth of PDAC cells all increase following CX3CL1 exposure, and that antagonism of CX3CR1 by the inhibitor JMS-17-2 reduces each of these phenotypes and correlates with a downregulation of AKT phosphorylation. These data suggest that PDAC tumor cell migration and growth, elements critical in metastatic progression, may susceptible to pharmacologic intervention.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Movement , Cell Survival , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Humans , Neoplasm Invasiveness
4.
Mol Cancer Res ; 15(6): 696-707, 2017 06.
Article in English | MEDLINE | ID: mdl-28242812

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related deaths in the United States, whereas colorectal cancer is the third most common cancer. The RNA-binding protein HuR (ELAVL1) supports a pro-oncogenic network in gastrointestinal (GI) cancer cells through enhanced HuR expression. Using a publically available database, HuR expression levels were determined to be increased in primary PDA and colorectal cancer tumor cohorts as compared with normal pancreas and colon tissues, respectively. CRISPR/Cas9 technology was successfully used to delete the HuR gene in both PDA (MIA PaCa-2 and Hs 766T) and colorectal cancer (HCT116) cell lines. HuR deficiency has a mild phenotype, in vitro, as HuR-deficient MIA PaCa-2 (MIA.HuR-KO(-/-)) cells had increased apoptosis when compared with isogenic wild-type (MIA.HuR-WT(+/+)) cells. Using this isogenic system, mRNAs were identified that specifically bound to HuR and were required for transforming a two-dimensional culture into three dimensional (i.e., organoids). Importantly, HuR-deficient MIA PaCa-2 and Hs 766T cells were unable to engraft tumors in vivo compared with control HuR-proficient cells, demonstrating a unique xenograft lethal phenotype. Although not as a dramatic phenotype, CRISPR knockout HuR HCT116 colon cancer cells (HCT.HuR-KO(-/-)) showed significantly reduced in vivo tumor growth compared with controls (HCT.HuR-WT(+/+)). Finally, HuR deletion affects KRAS activity and controls a subset of pro-oncogenic genes.Implications: The work reported here supports the notion that targeting HuR is a promising therapeutic strategy to treat GI malignancies. Mol Cancer Res; 15(6); 696-707. ©2017 AACR.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Colonic Neoplasms/genetics , ELAV-Like Protein 1/genetics , Pancreatic Neoplasms/genetics , Adenocarcinoma/pathology , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Colonic Neoplasms/pathology , ELAV-Like Protein 1/metabolism , Female , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Mice, Nude , Neoplasms, Experimental/genetics , Pancreatic Neoplasms/pathology , Phenotype , Xenograft Model Antitumor Assays
5.
Methods Mol Biol ; 1170: 393-409, 2014.
Article in English | MEDLINE | ID: mdl-24906326

ABSTRACT

Ras-dependent signaling is an important regulator of cell cycle progression, proliferation, senescence, and apoptosis. Several of the downstream effectors of Ras play dual roles in each of these processes. Under one set of conditions, they promote cell cycle progression and proliferation; yet, in a different paradigm, they drive cell cycle arrest and apoptosis. Furthermore, there is cross talk between certain downstream effectors of Ras including the PI3K-AKT and Raf-MEK-ERK pathways. Here we describe a series of experiments used to dissect the effect of different Ras-dependent signaling pathways on cell cycle progression, proliferation, senescence, and apoptosis. Furthermore, we highlight the importance of consistent growth conditions of cells in culture when studying Ras-dependent signaling as we show that the activation of downstream effectors of Ras changes with the confluency at which the cells are grown.


Subject(s)
Cell Proliferation , Signal Transduction , beta-Galactosidase/analysis , ras Proteins/metabolism , Animals , Anoikis , Bromodeoxyuridine/analysis , Cell Cycle , Cellular Senescence , Electrophoresis/methods , Enzyme-Linked Immunosorbent Assay/methods , Extracellular Signal-Regulated MAP Kinases/metabolism , Flow Cytometry/methods , Humans , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism , Staining and Labeling/methods , beta-Galactosidase/metabolism , raf Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...