Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Physiother Can ; 76(1): 34-45, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38465300

ABSTRACT

Purpose: To evaluate the use of wall-mounted prompts in facilitating physical activity (PA)-related discussions between individuals with cancer and oncology care providers. Methods: Individuals with cancer were approached to participate in a survey-based pre-post study. Half of participants (n = 100) completed a survey prior to installation of wall-mounted prompts in clinic while the other half (n = 100) completed a survey following installation of the prompts. Survey questions included content of PA-related discussion, satisfaction with PA education across treatment, and current PA level. The post-prompt survey also asked questions related to the prompt. Survey responses were analyzed using descriptive statistics. Chi-squared tests were performed to determine significance between timepoints. Results: One hundred participants completed the survey at each timepoint. A significant difference was found pre and post-prompt in the number of PA discussions occurring overall during care (p = 0.03). Some participants (53%) were satisfied with the PA education received during treatment. There was no significant difference in occurrence of PA discussion (p = 0.36) pre and post-prompt and no difference in PA behaviour was observed (p = 0.130). Conclusions: Wall-mounted prompts may be effective in increasing the frequency of PA-related discussions between individuals with cancer and their oncology team across treatment. Additional strategies, such as easy referral to rehabilitation professionals, are also needed to facilitate safe and effective PA behaviour during and after cancer treatments.


Objectif: évaluer l'utilisation des messages muraux pour faciliter les discussions sur l'activité physique (AP) entre les personnes atteintes d'un cancer et les professionnels de la santé en oncologie. Méthodologie: des personnes cancéreuses ont été invitées à participer à une étude avant-après par sondage. La moitié (n = 100) a rempli un sondage avant l'installation de messages muraux en clinique, tandis que l'autre moitié (n = 100) l'a rempli après l'installation de ces messages. Les questions du sondage incluaient le contenu des discussions liées à l'AP, la satisfaction envers l'éducation à l'AP tout au long du traitement et le taux d'AP actuelle. Le sondage avant-après comportait aussi des questions au sujet des messages. Les chercheurs ont analysé les réponses au sondage au moyen de statistiques descriptives et ont procédé à des tests du chi carré pour déterminer le caractère significatif entre chaque sondage. Résultats: au total, 100 participants ont rempli chacun des sondages. Les chercheurs ont observé une différence significative avant et après les messages quant au nombre de discussions globales sur l'AP pendant les soins (p = 0,03). Certains participants (53 %) étaient satisfaits de l'éducation sur l'AP donnée pendant le traitement. Il n'y avait pas de différence significative quant à l'occurrence de discussions sur l'AP (p = 0,36) avant et après le message ni quant aux comportements relatifs à l'AP (p = 0,130). Conclusions: les messages muraux peuvent contribuer à accroître la fréquence des discussions sur l'AP entre les personnes atteintes du cancer et leur équipe d'oncologie tout au long du traitement. D'autres stratégies, comme une orientation facile vers des professionnels de la réadaptation, s'imposent également pour favoriser un comportement sécuritaire et efficace à l'égard de l'AP pendant et après les traitements en oncologie.

2.
Med Sci Sports Exerc ; 56(3): 486-498, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37882083

ABSTRACT

PURPOSE: The purpose of this study was to determine how the intersection of coactivator-associated arginine methyltransferase 1 (CARM1) and biological sex affects skeletal muscle adaptations to chronic physical activity. METHODS: Twelve-week-old female (F) and male (M) wild-type (WT) and CARM1 skeletal muscle-specific knockout (mKO) mice were randomly assigned to sedentary (SED) or voluntary wheel running (VWR) experimental groups. For 8 wk, the animals in the VWR cohort had volitional access to running wheels. Subsequently, we performed whole-body functional tests, and 48 h later muscles were harvested for molecular analysis. Western blotting, enzyme activity assays, as well as confocal and transmission electron microscopy were used to examine skeletal muscle biology. RESULTS: Our data reveal a sex-dependent reduction in VWR volume caused by muscle-specific ablation of CARM1, as F CARM1 mKO mice performed less chronic, volitional exercise than their WT counterparts. Regardless of VWR output, exercise-induced adaptations in physiological function were similar between experimental groups. A broad panel of protein arginine methyltransferase (PRMT) biology measurements, including markers of arginine methyltransferase expression and activity, were unaffected by VWR, except for CARM1 and PRMT7 protein levels, which decreased and increased with VWR, respectively. Changes in myofiber morphology and mitochondrial protein content showed similar trends among animals. However, a closer examination of transmission electron microscopy images revealed contrasting responses to VWR in CARM1 mKO mice compared with WT littermates, particularly in mitochondrial size and fractional area. CONCLUSIONS: The present findings demonstrate that CARM1 mKO reduces daily running volume in F mice, as well as exercise-evoked skeletal muscle mitochondrial plasticity, which indicates that this enzyme plays an essential role in sex-dependent differences in exercise performance and mitochondrial health.


Subject(s)
Physical Conditioning, Animal , Protein-Arginine N-Methyltransferases , Humans , Male , Female , Mice , Animals , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Motor Activity/physiology , Physical Conditioning, Animal/physiology , Muscle, Skeletal/metabolism , Mice, Inbred C57BL
3.
Autophagy ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38018843

ABSTRACT

CARM1 (coactivator associated arginine methyltransferase 1) has recently emerged as a powerful regulator of skeletal muscle biology. However, the molecular mechanisms by which the methyltransferase remodels muscle remain to be fully understood. In this study, carm1 skeletal muscle-specific knockout (mKO) mice exhibited lower muscle mass with dysregulated macroautophagic/autophagic and atrophic signaling, including depressed AMP-activated protein kinase (AMPK) site-specific phosphorylation of ULK1 (unc-51 like autophagy activating kinase 1; Ser555) and FOXO3 (forkhead box O3; Ser588), as well as MTOR (mechanistic target of rapamycin kinase)-induced inhibition of ULK1 (Ser757), along with AKT/protein kinase B site-specific suppression of FOXO1 (Ser256) and FOXO3 (Ser253). In addition to lower mitophagy and autophagy flux in skeletal muscle, carm1 mKO led to increased mitochondrial PRKN/parkin accumulation, which suggests that CARM1 is required for basal mitochondrial turnover and autophagic clearance. carm1 deletion also elicited PPARGC1A (PPARG coactivator 1 alpha) activity and a slower, more oxidative muscle phenotype. As such, these carm1 mKO-evoked adaptations disrupted mitophagy and autophagy induction during food deprivation and collectively served to mitigate fasting-induced muscle atrophy. Furthermore, at the threshold of muscle atrophy during food deprivation experiments in humans, skeletal muscle CARM1 activity decreased similarly to our observations in mice, and was accompanied by site-specific activation of ULK1 (Ser757), highlighting the translational impact of the methyltransferase in human skeletal muscle. Taken together, our results indicate that CARM1 governs mitophagic, autophagic, and atrophic processes fundamental to the maintenance and remodeling of muscle mass. Targeting the enzyme may provide new therapeutic approaches for mitigating skeletal muscle atrophy.

4.
Am J Physiol Endocrinol Metab ; 325(3): E252-E266, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37493245

ABSTRACT

Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins critical for health and disease. The purpose of this study was to characterize the effects of short-term, pharmacological CARM1 inhibition on skeletal muscle size, function, and atrophy. Adult mice (n = 10 or 11/sex) were treated with either a CARM1 inhibitor (150 mg/kg EZM2302; EZM) or vehicle (Veh) via oral gavage for 11-13 days and muscle mass, function, and exercise capacity were assessed. In addition, we investigated the effect of CARM1 suppression on unilateral hindlimb denervation (DEN)-induced muscle atrophy (n = 8/sex). We report that CARM1 inhibition caused significant reductions in the asymmetric dimethylation of known CARM1 substrates but no change in CARM1 protein or mRNA content in skeletal muscle. Reduced CARM1 activity did not affect body or muscle mass, however, we observed a decrease in exercise capacity and muscular endurance in male mice. CARM1 methyltransferase activity increased in the muscle of Veh-treated mice following 7 days of DEN, and this response was blunted in EZM-dosed mice. Skeletal muscle mass and myofiber cross-sectional area were significantly reduced in DEN compared with contralateral, non-DEN limbs to a similar degree in both treatment groups. Furthermore, skeletal muscle atrophy and autophagy gene expression programs were elevated in response to DEN independent of CARM1 suppression. Collectively, these results suggest that short-term, pharmacological CARM1 inhibition in adult animals affects muscle performance in a sex-specific manner but does not impact the maintenance and remodeling of skeletal muscle mass during conditions of neurogenic muscle atrophy.NEW & NOTEWORTHY Short-term pharmacological inhibition of coactivator-associated arginine methyltransferase 1 (CARM1) was effective at significantly reducing CARM1 methyltransferase function in skeletal muscle. CARM1 inhibition did not impact muscle mass, but exercise capacity was impaired, particularly in male mice, whereas morphological and molecular signatures of denervation-induced muscle atrophy were largely maintained in animals administered the inhibitor. Altogether, the role of CARM1 in neuromuscular biology remains complex and requires further investigation of its therapeutic potential in muscle-wasting conditions.


Subject(s)
Muscle, Skeletal , Protein-Arginine N-Methyltransferases , Male , Mice , Animals , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Protein Binding
5.
Cancer Res ; 83(13): 2091-2092, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37403629

ABSTRACT

Statins are a class of cholesterol-lowering drugs that inhibit 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme of the mevalonate pathway. Evidence suggests that certain cancers depend on the mevalonate pathway for growth and survival, and thus blocking the mevalonate pathway with statins may offer a viable therapeutic approach for treating cancer, or at least enhance the efficacy of existing cancer drugs. In this issue of Cancer Research, Tran and colleagues showed that caffeine works jointly with FOXM1 inhibition to enhance the antitumor activity of statins in neuroblastoma cells. They found that caffeine synergizes with statins by suppressing statin-induced feedback activation of the mevalonate pathway. Here, we reflect on the potential of combining caffeine and statin drugs as a strategy for potentiating anticancer activity. See related article by Tran et al., p. 2248.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neuroblastoma , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Caffeine/pharmacology , Mevalonic Acid/metabolism , Drug Repositioning , Friends , Neuroblastoma/drug therapy , Dietary Supplements , Forkhead Box Protein M1
6.
Mol Metab ; 64: 101555, 2022 10.
Article in English | MEDLINE | ID: mdl-35872306

ABSTRACT

OBJECTIVE: Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins to regulate critical processes in health and disease. A mechanistic understanding of the role(s) of CARM1 in skeletal muscle biology is only gradually emerging. The purpose of this study was to elucidate the function of CARM1 in regulating the maintenance and plasticity of skeletal muscle. METHODS: We used transcriptomic, methylproteomic, molecular, functional, and integrative physiological approaches to determine the specific impact of CARM1 in muscle homeostasis. RESULTS: Our data defines the occurrence of arginine methylation in skeletal muscle and demonstrates that this mark occurs on par with phosphorylation and ubiquitination. CARM1 skeletal muscle-specific knockout (mKO) mice displayed altered transcriptomic and arginine methylproteomic signatures with molecular and functional outcomes confirming remodeled skeletal muscle contractile and neuromuscular junction characteristics, which presaged decreased exercise tolerance. Moreover, CARM1 regulates AMPK-PGC-1α signalling during acute conditions of activity-induced muscle plasticity. CONCLUSIONS: This study uncovers the broad impact of CARM1 in the maintenance and remodelling of skeletal muscle biology.


Subject(s)
Arginine , Transcriptome , Animals , Arginine/metabolism , Biology , Mice , Muscle, Skeletal/metabolism , Protein-Arginine N-Methyltransferases
7.
iScience ; 23(11): 101755, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33241200

ABSTRACT

Coactivator-associated arginine methyltransferase 1 (CARM1) is an emerging mediator of skeletal muscle plasticity. We employed genetic, physiologic, and pharmacologic approaches to determine whether CARM1 regulates the master neuromuscular phenotypic modifier AMP-activated protein kinase (AMPK). CARM1 skeletal muscle-specific knockout (mKO) mice displayed reduced muscle mass and dysregulated autophagic and atrophic processes downstream of AMPK. We observed altered interactions between CARM1 and AMPK and its network, including forkhead box protein O1, during muscle disuse. CARM1 methylated AMPK during the early stages of muscle inactivity, whereas CARM1 mKO mitigated progression of denervation-induced atrophy and was accompanied by attenuated phosphorylation of AMPK targets such as unc-51 like autophagy-activating kinase 1Ser555. Lower acetyl-coenzyme A corboxylaseSer79 phosphorylation, as well as reduced peroxisome proliferator-activated receptor-γ coactivator-1α, was also observed in mKO animals following acute administration of the direct AMPK activator MK-8722. Our study suggests that targeting CARM1-AMPK interplay may have broad impacts on neuromuscular health and disease.

8.
J Physiol ; 597(5): 1361-1381, 2019 03.
Article in English | MEDLINE | ID: mdl-30628727

ABSTRACT

KEY POINTS: Myotonic dystrophy type 1 (DM1), the second most common muscular dystrophy and most prevalent adult form of muscular dystrophy, is characterized by muscle weakness, wasting and myotonia. A microsatellite repeat expansion mutation results in RNA toxicity and dysregulation of mRNA processing, which are the primary downstream causes of the disorder. Recent studies with DM1 participants demonstrate that exercise is safe, enjoyable and elicits benefits in muscle strength and function; however, the molecular mechanisms of exercise adaptation in DM1 are undefined. Our results demonstrate that 7 weeks of volitional running wheel exercise in a pre-clinical DM1 mouse model resulted in significantly improved motor performance, muscle strength and endurance, as well as reduced myotonia. At the cellular level, chronic physical activity attenuated RNA toxicity, liberated Muscleblind-like 1 protein from myonuclear foci and improved mRNA alternative splicing. ABSTRACT: Myotonic dystrophy type 1 (DM1) is a trinucleotide repeat expansion neuromuscular disorder that is most prominently characterized by skeletal muscle weakness, wasting and myotonia. Chronic physical activity is safe and satisfying, and can elicit functional benefits such as improved strength and endurance in DM1 patients, but the underlying cellular basis of exercise adaptation is undefined. Our purpose was to examine the mechanisms of exercise biology in DM1. Healthy, sedentary wild-type (SED-WT) mice, as well as sedentary human skeletal actin-long repeat animals, a murine model of DM1 myopathy (SED-DM1), and DM1 mice with volitional access to a running wheel for 7 weeks (EX-DM1), were utilized. Chronic exercise augmented strength and endurance in vivo and in situ in DM1 mice. These alterations coincided with normalized measures of myopathy, as well as increased mitochondrial content. Electromyography revealed a 70-85% decrease in the duration of myotonic discharges in muscles from EX-DM1 compared to SED-DM1 animals. The exercise-induced enhancements in muscle function corresponded at the molecular level with mitigated spliceopathy, specifically the processing of bridging integrator 1 and muscle-specific chloride channel (CLC-1) transcripts. CLC-1 protein content and sarcolemmal expression were lower in SED-DM1 versus SED-WT animals, but they were similar between SED-WT and EX-DM1 groups. Chronic exercise also attenuated RNA toxicity, as indicated by reduced (CUG)n foci-positive myonuclei and sequestered Muscleblind-like 1 (MBNL1). Our data indicate that chronic exercise-induced physiological improvements in DM1 occur in concert with mitigated primary downstream disease mechanisms, including RNA toxicity, MBNL1 loss-of-function, and alternative mRNA splicing.


Subject(s)
Myotonic Dystrophy/therapy , Physical Conditioning, Animal , Alternative Splicing , Animals , Disease Models, Animal , Female , Male , Mice , Muscle, Skeletal/physiology , Myotonic Dystrophy/genetics , Myotonic Dystrophy/physiopathology , RNA, Messenger/metabolism
9.
Med Sci Sports Exerc ; 50(3): 447-457, 2018 03.
Article in English | MEDLINE | ID: mdl-29112628

ABSTRACT

PURPOSE: This study aimed to determine protein arginine methyltransferase 1 (PRMT1), -4 (also known as coactivator-associated arginine methyltransferase 1 [CARM1]), and -5 expression and function during acute, exercise-induced skeletal muscle remodeling in vivo. METHODS: C57BL/6 mice were assigned to one of three experimental groups: sedentary, acute bout of exercise, or acute exercise followed by 3 h of recovery. Mice in the exercise groups performed a single bout of treadmill running at 15 m·min for 90 min. Hindlimb muscles were collected, and quantitative real-time polymerase chain reaction and Western blotting were used to examine exercise-induced gene expression. RESULTS: The PRMT gene expression and global enzyme activity were muscle-specific, generally being higher (P < 0.05) in slow, oxidative muscle, as compared with faster, more glycolytic tissue. Despite the significant activation of canonical exercise-induced signaling involving AMP-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), PRMT expression and activity at the whole muscle level were unchanged. However, subcellular analyses revealed a significant exercise-evoked myonuclear translocation of PRMT1 before the nuclear accumulation of PGC-1α. Acute physical activity also augmented (P < 0.05) the targeted methyltransferase activities of the PRMT in the myonuclear compartment, suggesting that PRMT-mediated histone arginine methylation is part of the early signals that drive muscle plasticity. Finally, basal PGC-1α asymmetric dimethylarginine status, as well as constitutive interactions between PGC-1α and PRMT1 or CARM1 may contribute to the exercise-induced muscle remodeling process. CONCLUSIONS: The present study provides the first evidence that PRMT activity is selectively augmented during the initial activation of exercise-induced skeletal muscle remodeling in vivo. These data support the emergence of PRMTs as important players in the regulation of skeletal muscle plasticity.


Subject(s)
Muscle, Skeletal/enzymology , Physical Conditioning, Animal , Protein-Arginine N-Methyltransferases/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Male , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Random Allocation , Signal Transduction
10.
Am J Physiol Cell Physiol ; 314(2): C177-C190, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29092819

ABSTRACT

Protein arginine methyltransferase 1 (PRMT1), PRMT4, and PRMT5 catalyze the methylation of arginine residues on target proteins. Previous work suggests that these enzymes regulate skeletal muscle plasticity. However, the function of PRMTs during disuse-induced muscle remodeling is unknown. The purpose of our study was to determine whether denervation-induced muscle disuse alters PRMT expression and activity in skeletal muscle, as well as to contextualize PRMT biology within the early disuse-evoked events that precede atrophy, which remain largely undefined. Mice were subjected to 6, 12, 24, 72, or 168 h of unilateral hindlimb denervation. Muscle mass decreased by ~30% after 72 or 168 h of neurogenic disuse, depending on muscle fiber type composition. The expression, localization, and activities of PRMT1, PRMT4, and PRMT5 were modified, exhibiting changes in gene expression and activity that were PRMT-specific. Rapid alterations in canonical muscle atrophy signaling such as forkhead box protein O1, muscle RING-finger protein-1, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) content, AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase, were observed before measurable decrements in muscle mass. Denervation-induced modifications in AMPK-PRMT1 and PGC-1α-PRMT1 binding revealed a novel, putative PRMT1-AMPK-PGC-1α signaling axis in skeletal muscle. Here, PGC-1α-PRMT1 binding was elevated after 6 h of disuse, whereas AMPK-PRMT1 interactions were reduced following 168 h of denervation. Our data suggest that PRMT biology is integral to the mechanisms that precede and initiate skeletal muscle atrophy during conditions of neurogenic disuse. This study furthers our understanding of the role of PRMTs in governing skeletal muscle plasticity.


Subject(s)
Cell Plasticity , Muscle, Skeletal/enzymology , Muscle, Skeletal/innervation , Muscular Atrophy/enzymology , Protein-Arginine N-Methyltransferases/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Disease Models, Animal , Male , Mice, Inbred C57BL , Muscle Denervation , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phenotype , Protein Binding , Protein-Arginine N-Methyltransferases/genetics , Signal Transduction , Time Factors
11.
Front Physiol ; 8: 870, 2017.
Article in English | MEDLINE | ID: mdl-29163212

ABSTRACT

Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD). PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD), spinal muscular atrophy (SMA), and amyotrophic lateral sclerosis (ALS) suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs). This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research.

SELECTION OF CITATIONS
SEARCH DETAIL
...