Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stress ; 23(4): 457-465, 2020 07.
Article in English | MEDLINE | ID: mdl-32093522

ABSTRACT

The chronic variable stress (CVS) paradigm is frequently used to model the changes in hypothalamic pituitary adrenal (HPA) axis function characteristic of many stress-related diseases. However, male C57BL/6 mice are typically resistant to CVS's effects, making it difficult to determine how chronic stress exposure may alter acute HPA function and regulation in these mice. As social support in rodents can profoundly influence physiological and behavioral processes, including the HPA axis, we sought to characterize the effects of CVS exposure on basal and acute stress-induced HPA axis function in pair- and single-housed adult male mice. Despite all subjects exhibiting decreased body weight gain after six weeks of CVS, the corticosterone response to a novel, acute restraint stressor was enhanced by CVS exclusively in single-housed males. CVS also significantly increased arginine vasopressin (AVP) mRNA in the hypothalamic paraventricular nucleus (PVN) in single-housed males only. Moreover, in single-, but not pair-housed mice, CVS attenuated decreases in circulating OT found following acute restraint. Only the effect of CVS to elevate PVN corticotropin releasing hormone (CRH) mRNA levels after an acute stressor was restricted to pair-housed mice. Collectively, our findings suggest that social isolation reveals effects of CVS on the HPA axis in male C57BL/6 mice.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Animals , Corticosterone , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Male , Mice , Mice, Inbred C57BL , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System/metabolism , Social Isolation , Stress, Psychological
2.
Physiol Behav ; 209: 112613, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31299374

ABSTRACT

Chronic stress is often associated with a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which can greatly increase risk for a number of stress-related diseases, including neuropsychiatric disorders. Despite a striking sex-bias in the prevalence of many of these disorders, few preclinical studies have examined female subjects. Hence, the present study aimed to explore the effects of chronic stress on the basal and acute stress-induced activity of the HPA axis in the female C57BL/6 mouse. We used a chronic variable stress (CVS) paradigm in these studies, which successfully induces physiological and behavioral changes that are similar to those reported for some patients with mood disorders. Using this model, we found pronounced, time-dependent effects of chronic stress on the HPA axis. CVS-treated females exhibited adrenal hypertrophy, yet their pattern of glucocorticoid secretion in the morning resembled that of controls. CVS-treated and control females had similar morning basal corticosterone (CORT) levels, which were both significantly elevated following a restraint stressor. Although morning basal gene expression of the key HPA-controlling neuropeptides corticotropin releasing hormone (CRH), arginine vasopressin (AVP) and oxytocin (OT) was unaltered within the paraventricular nucleus (PVN) by CVS, CVS altered the PVN OT and AVP mRNA responses to acute restraint. In control females, acute stress decreased AVP, but not OT mRNA; whereas, in CVS females, it decreased OT, but not, AVP mRNA. Unlike the morning pattern of HPA activity, in the evening, CVS-treated females showed increased basal CORT with hypoactive responses of CORT and PVN c-Fos immunoreactivity to restraint stress. Furthermore, CVS elevated evening PVN CRH and OT mRNAs in the PVN, but it did not influence anxiety- or depressive-like behavior after a light/dark box or tail suspension test. Taken together, these findings indicate that CVS is an effective model for HPA axis dysregulation in the female mouse and may be relevant for stress-related diseases.


Subject(s)
Hypothalamo-Hypophyseal System/physiopathology , Pituitary-Adrenal System/physiopathology , Stress, Psychological/physiopathology , Animals , Anxiety/psychology , Arginine Vasopressin/metabolism , Chronic Disease , Corticotropin-Releasing Hormone/metabolism , Depression/psychology , Female , Gene Expression Regulation , Glucocorticoids/metabolism , Mice , Mice, Inbred C57BL , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Restraint, Physical
3.
Endocrinology ; 159(7): 2803-2814, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29788320

ABSTRACT

Chronic exposure to stressors impairs the function of multiple organ systems and has been implicated in increased disease risk. In the rodent, the chronic variable stress (CVS) paradigm has successfully modeled several stress-related illnesses. Despite striking disparities between men and women in the prevalence and etiology of disorders associated with chronic stress, most preclinical research examining chronic stressor exposure has focused on male subjects. One potential mediator of the consequences of CVS is oxytocin (OT), a known regulator of stress neurocircuitry and behavior. To ascertain the sex-specific effects of CVS in the C57BL/6 mouse on OT and the structurally similar neuropeptide arginine vasopressin (AVP), the numbers of immunoreactive and mRNA-containing neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) were determined using immunohistochemistry and in situ hybridization, respectively. In addition, the mice underwent a battery of behavioral tests to determine whether CVS affects social behaviors known to be regulated by OT and AVP. Six weeks of CVS increased sociability in the female mouse and decreased PVN OT immunoreactivity (ir) and AVP mRNA. In the male mice, CVS decreased PVN OT mRNA but had no effect on social behavior, AVP, or OT-ir. CVS also increased the soma volume for PVN OT neurons. In contrast, OT and AVP neurons in the SON were unaffected by CVS treatment. These findings demonstrate clear sex differences in the effects of CVS on neuropeptides in the mouse, suggest a pathway through which CVS alters sociability and stress-coping responses in females and reveals a vulnerability to CVS in the C57BL/6 mouse strain.


Subject(s)
Neuropeptides/metabolism , Social Behavior , Animals , Arginine Vasopressin/metabolism , Female , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Supraoptic Nucleus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...