Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 651729, 2021.
Article in English | MEDLINE | ID: mdl-34168664

ABSTRACT

Increasing productivity and tolerance against cypress canker disease is an important goal in the Mexican white cypress breeding program in New Zealand, and screening has been in place since 1983. Cypress canker disease is caused by Seiridium cardinale and Seiridium cupressi, the current study presents the results of two progeny trials within the breeding program in the North Island of New Zealand. The trials were established as open-pollinated progeny tested and were assessed for diameter at breast height, branch size, canker severity score, malformation score, and stem straightness score and acceptability score. Heritability estimates were moderate ranging from 0.21 to 0.41 for diameter at breast height and from 0.14 to 0.31 for canker severity score. Stem form attributes showed heritability from 0.08 (malformation) to 0.38 (straightness). No trait showed any significant G × E interaction between investigated sites. This was supported by the very strong genetic correlations estimated between the traits recorded in Welcome Bay and Matata trials. Unfavourable genetic correlations ranging from 0.25 to 0.46 were found between diameter at breast height and canker severity score, indicating that the continued selection for genotypes with improved diameter at breast height would also increase susceptibility to cypress canker. Additionally, unfavourable genetic correlations ranging from 0.52 to 0.73 were found between branch size and diameter at breast height and should be considered in selection programs. The moderate heritability estimated for canker severity score indicates that breeding values for this trait could be predicted with acceptable accuracy and included in the breeding program for Cupressus lusitanica, enabling the identification of genotypes with tolerance to canker severity to be deployed to locations where cypress canker is present in New Zealand.

2.
Front Plant Sci ; 11: 596315, 2020.
Article in English | MEDLINE | ID: mdl-33488644

ABSTRACT

Phenotyping individual trees to quantify interactions among genotype, environment, and management practices is critical to the development of precision forestry and to maximize the opportunity of improved tree breeds. In this study we utilized airborne laser scanning (ALS) data to detect and characterize individual trees in order to generate tree-level phenotypes and tree-to-tree competition metrics. To examine our ability to account for environmental variation and its relative importance on individual-tree traits, we investigated the use of spatial models using ALS-derived competition metrics and conventional autoregressive spatial techniques. Models utilizing competition covariate terms were found to quantify previously unexplained phenotypic variation compared with standard models, substantially reducing residual variance and improving estimates of heritabilities for a set of operationally relevant traits. Models including terms for spatial autocorrelation and competition performed the best and were labelled ACE (autocorrelation-competition-error) models. The best ACE models provided statistically significant reductions in residuals ranging from -65.48% for tree height (H) to -21.03% for wood stiffness (A), and improvements in narrow sense heritabilities from 38.64% for H to 14.01% for A. Individual tree phenotyping using an ACE approach is therefore recommended for analyses of research trials where traits are susceptible to spatial effects.

3.
BMC Genet ; 20(1): 81, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31651248

ABSTRACT

BACKGROUND: Forest trees can occupy extensive geography and environmentally highly variable areas which result in high genetic variability in the direction of pressure from natural selection. At the same time, the majority of conifer species are wind-pollinated from both short and long distances, resulting in wide-spread gene flow, which can lead to maladaptation to local conditions. Quantitative analyses of provenance/progeny tests correct for genetic differences between populations to ensure unbiased genetic parameters are obtained. Commonly, the provenance effect is fitted as a fixed term or can be implemented as a contemporary group in the pedigree. RESULTS: The use of a provenance effect, either as a fixed term or as the same contemporary groups in both maternal and paternal sides of the pedigree, resulted in fairly similar precision of genetic parameters in our case. However, when we developed a phantom contemporary group for the paternal side of the pedigree that considered a different genetic quality of pollen compared with the maternal contribution from trees in the local environment, the model fit and accuracy of breeding values increased. CONCLUSION: Consideration of the mating dynamics and the vector of gene flow are important factors in modelling contemporary genetic groups, particularly when implementing pedigrees within a mixed model framework to obtain unbiased estimates of genetic parameters. This approach is especially important in traits involved in local adaptation.


Subject(s)
Genetic Variation , Tracheophyta/physiology , Gene Flow , Genetics, Population , Genotype , Models, Genetic , Plant Breeding , Pollination , Reproduction , Tracheophyta/genetics
4.
J Hered ; 109(7): 802-810, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30285150

ABSTRACT

Open-pollinated (OP) mating is frequently used in forest tree breeding due to the relative temporal and financial efficiency of the approach. The trade-off is the lower precision of the estimated genetic parameters. Pedigree/sib-ship reconstruction has been proven as a tool to correct and complete pedigree information and to improve the precision of genetic parameter estimates. Our study analyzed an advanced generation Eucalyptus population from an OP breeding program using single-step genetic evaluation. The relationship matrix inferred from sib-ship reconstruction was used to rescale the marker-based relationship matrix (G matrix). This was compared with a second scenario that used rescaling based on the documented pedigree. The proposed single-step model performed better with respect to both model fit and the theoretical accuracy of breeding values. We found that the prediction accuracy was superior when using the pedigree information only when compared with using a combination of the pedigree and genomic information. This pattern appeared to be mainly a result of accumulated unrecognized relatedness over several breeding cycles, resulting in breeding values being shrunk toward the population mean. Using biased, pedigree-based breeding values as the base with which to correlate predicted GEBVs, resulted in the underestimation of prediction accuracies. Using breeding values estimated on the basis of sib-ship reconstruction resulted in increased prediction accuracies of the genotyped individuals. Therefore, selection of the correct base for estimation of prediction accuracy is critical. The beneficial impact of sib-ship reconstruction using G matrix rescaling was profound, especially in traits with inbreeding depression, such as stem diameter.


Subject(s)
Breeding/methods , Eucalyptus/genetics , Eucalyptus/physiology , Genes, Plant , Pollination , Genetic Markers
5.
PLoS One ; 10(7): e0130601, 2015.
Article in English | MEDLINE | ID: mdl-26158446

ABSTRACT

Pedigree reconstruction using molecular markers enables efficient management of inbreeding in open-pollinated breeding strategies, replacing expensive and time-consuming controlled pollination. This is particularly useful in preferentially outcrossed, insect pollinated Eucalypts known to suffer considerable inbreeding depression from related matings. A single nucleotide polymorphism (SNP) marker panel consisting of 106 markers was selected for pedigree reconstruction from the recently developed high-density Eucalyptus Infinium SNP chip (EuCHIP60K). The performance of this SNP panel for pedigree reconstruction in open-pollinated progenies of two Eucalyptus nitens seed orchards was compared with that of two microsatellite panels with 13 and 16 markers respectively. The SNP marker panel out-performed one of the microsatellite panels in the resolution power to reconstruct pedigrees and out-performed both panels with respect to data quality. Parentage of all but one offspring in each clonal seed orchard was correctly matched to the expected seed parent using the SNP marker panel, whereas parentage assignment to less than a third of the expected seed parents were supported using the 13-microsatellite panel. The 16-microsatellite panel supported all but one of the recorded seed parents, one better than the SNP panel, although there was still a considerable level of missing and inconsistent data. SNP marker data was considerably superior to microsatellite data in accuracy, reproducibility and robustness. Although microsatellites and SNPs data provide equivalent resolution for pedigree reconstruction, microsatellite analysis requires more time and experience to deal with the uncertainties of allele calling and faces challenges for data transferability across labs and over time. While microsatellite analysis will continue to be useful for some breeding tasks due to the high information content, existing infrastructure and low operating costs, the multi-species SNP resource available with the EuCHIP60k, opens a whole new array of opportunities for high-throughput, genome-wide or targeted genotyping in species of Eucalyptus.


Subject(s)
Eucalyptus/genetics , Genotyping Techniques/methods , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide , Alleles , DNA, Plant/chemistry , DNA, Plant/genetics , Genotype , Inbreeding , Plant Breeding/methods , Pollination/genetics , Reproducibility of Results , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...