Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 596(12): 1586-1599, 2022 06.
Article in English | MEDLINE | ID: mdl-35170054

ABSTRACT

Arabidopsis thaliana activating factor 2 (ATAF2) plays extensive regulatory roles in pathogenesis, seedling development, and stress responses. Here, we performed transcriptome analysis on ATAF2 loss- and gain-of-function mutants to identify differentially expressed genes (DEGs). Gene ontology analyses on DEGs reveal that ATAF2 enhances seedling responses to multiple hormone and stress signals. In particular, our transcriptome analysis suggests that ATAF2 promotes ethylene biosynthesis and responses via activating relevant genes. This novel role of ATAF2 was further demonstrated by using multiple ATAF2-null and overexpression lines for reverse transcription quantitative PCR verification, ethylene production measurements, and assays of seedlings growth responses to the ethylene immediate biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC). ACC suppresses ATAF2 expression to form a negative feedback regulation loop.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant , Repressor Proteins/metabolism , Seedlings/genetics , Seedlings/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Transgenic Res ; 30(4): 499-528, 2021 08.
Article in English | MEDLINE | ID: mdl-33825100

ABSTRACT

The advent of genome editing has opened new avenues for targeted trait enhancement in fruit, ornamental, industrial, and all specialty crops. In particular, CRISPR-based editing systems, derived from bacterial immune systems, have quickly become routinely used tools for research groups across the world seeking to edit plant genomes with a greater level of precision, higher efficiency, reduced off-target effects, and overall ease-of-use compared to ZFNs and TALENs. CRISPR systems have been applied successfully to a number of horticultural and industrial crops to enhance fruit ripening, increase stress tolerance, modify plant architecture, control the timing of flower development, and enhance the accumulation of desired metabolites, among other commercially-important traits. As editing technologies continue to advance, so too does the ability to generate improved crop varieties with non-transgenic modifications; in some crops, direct transgene-free edits have already been achieved, while in others, T-DNAs have successfully been segregated out through crossing. In addition to the potential to produce non-transgenic edited crops, and thereby circumvent regulatory impediments to the release of new, improved crop varieties, targeted gene editing can speed up trait improvement in crops with long juvenile phases, reducing inputs resulting in faster market introduction to the market. While many challenges remain regarding optimization of genome editing in ornamental, fruit, and industrial crops, the ongoing discovery of novel nucleases with niche specialties for engineering applications may form the basis for additional and potentially crop-specific editing strategies.


Subject(s)
CRISPR-Cas Systems , Crops, Agricultural/genetics , Fruit/genetics , Gene Editing , Genome, Plant , Plant Breeding/methods , Plants, Genetically Modified/genetics , Gene Targeting
3.
Plant Cell Rep ; 40(6): 915-930, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33515309

ABSTRACT

The conventional breeding of fruits and fruit trees has led to the improvement of consumer-driven traits such as fruit size, yield, nutritional properties, aroma and taste, as well as the introduction of agronomic properties such as disease resistance. However, even with the assistance of modern molecular approaches such as marker-assisted selection, the improvement of fruit varieties by conventional breeding takes considerable time and effort. The advent of genetic engineering led to the rapid development of new varieties by allowing the direct introduction of genes into elite lines. In this review article, we discuss three such case studies: the Arctic® apple, the Pinkglow pineapple and the SunUp/Rainbow papaya. We consider these events in the light of global regulations for the commercialization of genetically modified organisms (GMOs), focusing on the differences between product-related systems (the USA/Canada comparative safety assessment) and process-related systems (the EU "precautionary principle" model). More recently, genome editing has provided an efficient way to introduce precise mutations in plants, including fruits and fruit trees, replicating conventional breeding outcomes without the extensive backcrossing and selection typically necessary to introgress new traits. Some jurisdictions have reacted by amending the regulations governing GMOs to provide exemptions for crops that would be indistinguishable from conventional varieties based on product comparison. This has revealed the deficiencies of current process-related regulatory frameworks, particularly in the EU, which now stands against the rest of the world as a unique example of inflexible and dogmatic governance based on political expediency and activism rather than rigorous scientific evidence.


Subject(s)
Crops, Agricultural/genetics , Fruit/genetics , Gene Editing/legislation & jurisprudence , Plant Breeding/legislation & jurisprudence , Plant Breeding/methods , Ananas/genetics , Canada , Carica/genetics , Europe , Gene Editing/methods , Malus/genetics , Mutagenesis , Plants, Genetically Modified/genetics , Polyploidy , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...