Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0295887, 2024.
Article in English | MEDLINE | ID: mdl-38820334

ABSTRACT

In recent years, much of the emphasis for transformation of introductory STEM courses has focused on "active learning", and while this approach has been shown to produce more equitable outcomes for students, the construct of "active learning" is somewhat ill-defined and is often used as a "catch-all" that can encompass a wide range of pedagogical techniques. Here we present an alternative approach for how to think about the transformation of STEM courses that focuses instead on what students should know and what they can do with that knowledge. This approach, known as three-dimensional learning (3DL), emerged from the National Academy's "A Framework for K-12 Science Education", which describes a vision for science education that centers the role of constructing productive causal accounts for phenomena. Over the past 10 years, we have collected data from introductory biology, chemistry, and physics courses to assess the impact of such a transformation on higher education courses. Here we report on an analysis of video data of class sessions that allows us to characterize these sessions as active, 3D, neither, or both 3D and active. We find that 3D classes are likely to also involve student engagement (i.e. be active), but the reverse is not necessarily true. That is, focusing on transformations involving 3DL also tends to increase student engagement, whereas focusing solely on student engagement might result in courses where students are engaged in activities that do not involve meaningful engagement with core ideas of the discipline.


Subject(s)
Problem-Based Learning , Students , Humans , Problem-Based Learning/methods , Science/education , Learning , Curriculum
2.
JACS Au ; 2(8): 1869-1880, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36032534

ABSTRACT

What we as scientists and educators assess has a tremendous impact on whom we authorize to participate in science careers. Unfortunately, in critical gateway chemistry courses, assessments commonly emphasize and reward recall of disaggregated facts or performance of (often mathematical) skills. Such an emphasis marginalizes students based on their access to pre-college math preparation and misrepresents the intellectual work of chemistry. Here, we explore whether assessing intellectual work more authentic to the practice of chemistry (i.e., mechanistic reasoning) might support more equitable achievement. Mechanistic reasoning involves explaining a phenomenon in terms of interactions between lower scale entities (e.g., atoms and molecules). We collected 352 assessment tasks administered in college-level introductory chemistry courses across two universities. What was required for success on these tasks was rote math skills (165), mechanistic reasoning (36), neither (126), or both (25). Logistic regression models predict that the intellectual work emphasized on in an assessment could impact whether 15-20% of the cohort passes or fails. Whom does assessment emphasis impact most? Predicted pass rates for those often categorized as "at-risk" could be 67 or 93%, depending on whether their success was defined by rote calculation or mechanistic reasoning. Therefore, assessment transformation could provide a path toward advancing the relevance of our courses and educational equity.

3.
PLoS One ; 15(6): e0234640, 2020.
Article in English | MEDLINE | ID: mdl-32544166

ABSTRACT

The importance of improving STEM education is of perennial interest, and to this end, the education community needs ways to characterize transformation efforts. Three-dimensional learning (3DL) is one such approach to transformation, in which core ideas of the discipline, scientific practices, and crosscutting concepts are combined to support student development of disciplinary expertise. We have previously reported on an approach to the characterization of assessments, the Three-Dimensional Learning Assessment Protocol (3D-LAP), that can be used to identify whether assessments have the potential to engage students in 3DL. Here we present the development of a companion, the Three-Dimensional Learning Observation Protocol (3D-LOP), an observation protocol that can reliably distinguish between instruction that has potential for engagement with 3DL and instruction that does not. The 3D-LOP goes beyond other observation protocols, because it is intended not only to characterize the pedagogical approaches being used in the instructional environment, but also to identify whether students are being asked to engage with scientific practices, core ideas, and crosscutting concepts. We demonstrate herein that the 3D-LOP can be used reliably to code for the presence of 3DL; further, we present data that show the utility of the 3D-LOP in differentiating between instruction that has the potential to promote 3DL from instruction that does not. Our team plans to continue using this protocol to evaluate outcomes of instructional transformation projects. We also propose that the 3D-LOP can be used to support practitioners in developing curricular materials and selecting instructional strategies to promote engagement in three-dimensional instruction.


Subject(s)
Learning , Science/education , Universities/standards , Curriculum , Educational Measurement , Humans , Students
4.
Sci Adv ; 4(10): eaau0554, 2018 10.
Article in English | MEDLINE | ID: mdl-30397646

ABSTRACT

We evaluate the impact of an institutional effort to transform undergraduate science courses using an approach based on course assessments. The approach is guided by A Framework for K-12 Science Education and focuses on scientific and engineering practices, crosscutting concepts, and core ideas, together called three-dimensional learning. To evaluate the extent of change, we applied the Three-dimensional Learning Assessment Protocol to 4 years of chemistry, physics, and biology course exams. Changes in exams differed by discipline and even by course, apparently depending on an interplay between departmental culture, course organization, and perceived course ownership, demonstrating the complex nature of transformation in higher education. We conclude that while transformation must be supported at all organizational levels, ultimately, change is controlled by factors at the course and departmental levels.

5.
Chem Rev ; 118(12): 6053-6087, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29893111

ABSTRACT

This Review of Chemistry Education Research (CER) provides an overview of the development of research in chemistry education from the early days, when ideas about how to teach chemistry and help students learn were guided by practitioner wisdom, to current research that is based on theories of learning and provides evidence from which to make arguments about improving teaching and learning. We introduce the dominant learning theories that have guided CER over the years and attempt to show how they have been integrated into modern research in chemistry education. We also provide examples of how this research can be used to inform the development and use of educational materials. Because CER literature is vast, we chose to limit the research we reviewed to those studies that help us answer three driving questions: (1) What should students know and be able to do with that knowledge? (2) How will we know that students have developed a coherent and useful understanding of chemistry? (3) What evidence do we have about how to help students develop a deep and robust understanding of chemistry?

6.
Chem Biol ; 22(2): 273-84, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25699604

ABSTRACT

Inhibitors of histone deacetylases (HDACi) hold considerable therapeutic promise as clinical anticancer therapies. However, currently known HDACi exhibit limited isoform specificity, off-target activity, and undesirable pharmaceutical properties. Thus, HDACi with new chemotypes are needed to overcome these limitations. Here, we identify a class of HDACi with a previously undescribed benzoylhydrazide scaffold that is selective for the class I HDACs. These compounds are competitive inhibitors with a fast-on/slow-off HDAC-binding mechanism. We show that the lead compound, UF010, inhibits cancer cell proliferation via class I HDAC inhibition. This causes global changes in protein acetylation and gene expression, resulting in activation of tumor suppressor pathways and concurrent inhibition of several oncogenic pathways. The isotype selectivity coupled with interesting biological activities in suppressing tumor cell proliferation support further preclinical development of the UF010 class of compounds for potential therapeutic applications.


Subject(s)
Benzamides/chemistry , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Hydrazines/chemistry , Acetylation , Benzamides/metabolism , Benzamides/toxicity , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , HCT116 Cells , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/toxicity , Histone Deacetylases/metabolism , Humans , Hydrazines/metabolism , Hydrazines/toxicity , Kinetics , Protein Binding , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...