Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 14(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37504870

ABSTRACT

The success of implant treatment is dependent on the osseointegration of the implant. The main goal of this work was to improve the biofunctionality of the Ti-13Nb-13Zr implant alloy by the production of oxide nanotubes (ONTs) layers for better anchoring in the bone and use as an intelligent carrier in drug delivery systems. Anodization of the Ti-13Nb-13Zr alloy was carried out in 0.5% HF, 1 M (NH4)2SO4 + 2% NH4F, and 1 M ethylene glycol + 4 wt.% NH4F electrolytes. Physicochemical characteristics of ONTs were performed by high-resolution electron microscopy (HREM), X-ray photoelectron spectroscopy (XPS), and scanning Kelvin probe (SKP). Water contact angle studies were conducted using the sitting airdrop method. In vitro biological properties and release kinetics of ibuprofen were investigated. The results of TEM and XPS studies confirmed the formation of the single-walled ONTs of three generations on the bi-phase (α + ß) Ti-13Nb-13Zr alloy. The ONTs were composed of oxides of the alloying elements. The proposed surface modification method ensured good hemolytic properties, no cytotoxity for L-929 mouse cells, good adhesion, increased surface wettability, and improved athrombogenic properties of the Ti-13Nb-13Zr alloy. Nanotubular surfaces allowed ibuprofen to be released from the polymer matrix according to the Gallagher-Corrigan model.

2.
Materials (Basel) ; 16(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36837038

ABSTRACT

Surface charge and in vitro corrosion resistance are some of the key parameters characterizing biomaterials in the interaction of the implant with the biological environment. Hence, this work investigates the in vitro bioelectrochemical behavior of newly developed oxide nanotubes (ONTs) layers of second-generation (2G) on a Ti-13Zr-13Nb alloy. The 2G ONTs were produced by anodization in 1 M (NH4)2SO4 solution with 2 wt.% of NH4F. The physical and chemical properties of the obtained bamboo-inspired 2G ONTs were characterized using scanning electron microscopy with field emission and energy dispersive spectroscopy. Zeta potential measurements for the examined materials were carried out using an electrokinetic analyzer in aqueous electrolytes of potassium chloride, phosphate-buffered saline and artificial blood. It was found that the electrolyte type and the ionic strength affect the bioelectrochemical properties of 2G ONTs layers. Open circuit potential and anodic polarization curve results proved the influence of anodizing on the improvement of in vitro corrosion resistance of the Ti-13Zr-13Nb alloy in PBS solution. The anodizing conditions used can be proposed for the production of long-term implants, which are not susceptible to pitting corrosion up to 9.4 V.

3.
Materials (Basel) ; 16(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36770242

ABSTRACT

The biomedical Ti-13Zr-13Nb bi-phase (α + ß) alloy for long-term applications in implantology has recently been developed. The porous oxide nanotubes' (ONTs) layers of various geometries and lengths on the Ti-13Zr-13Nb alloy surface can be produced by anodizing to improve osseointegration. This work was aimed at how anodizing conditions determinatine the micromechanical and biotribological properties of the Ti-13Zr-13Nb alloy. First-generation (1G), second-generation (2G), and third-generation (3G) ONT layers were produced on the Ti-13Zr-13Nb alloy surface by anodizing. The microstructure was characterized using SEM. Micromechanical properties were investigated by the Vickers microhardness test under variable loads. Biotribological properties were examined in Ringer's solution in a reciprocating motion in the ball-on-flat system. The 2D roughness profiles method was used to assess the wear tracks of the tested materials. Wear scars' analysis of the ZrO2 ball was performed using optical microscopy. It was found that the composition of the electrolyte with the presence of fluoride ions was an essential factor influencing the micromechanical and biotribological properties of the obtained ONT layers. The three-body abrasion wear mechanism was proposed to explain the biotribological wear in Ringer's solution for the Ti-13Zr-13Nb alloy before and after anodizing.

4.
Materials (Basel) ; 15(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35329771

ABSTRACT

In the group of vanadium-free titanium alloys used for applications for long-term implants, the Ti-13Zr-13Nb alloy has recently been proposed. The production of a porous layer of oxide nanotubes (ONTs) with a wide range of geometries and lengths on the Ti-13Zr-13Nb alloy surface can increase its osteoinductive properties and enable intelligent drug delivery. This work concerns developing a method of electrochemical modification of the Ti-13Zr-13Nb alloy surface to obtain third-generation ONTs. The effect of the anodizing voltage on the microstructure and thickness of the obtained oxide layers was conducted in 1 M C2H6O2 + 4 wt% NH4F electrolyte in the voltage range 5-35 V for 120 min at room temperature. The obtained third-generation ONTs were characterized using SEM, EDS, SKP, and 2D roughness profiles methods. The preliminary assessment of corrosion resistance carried out in accelerated corrosion tests in the artificial atmosphere showed the high quality of the newly developed ONTs and the slight influence of neutral salt spray on their micromechanical properties.

5.
Materials (Basel) ; 14(20)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34683734

ABSTRACT

This work concerns the development of a method of functionalization of the surface of the biomedical Ti-6Al-7Nb alloy by producing oxide nanotubes (ONTs) with drug-eluting properties. Shaping of the morphology, microstructure, and thickness of the oxide layer was carried out by anodization in an aqueous solution of 1 M ethylene glycol with the addition of 0.2 M NH4F in the voltage range 5-100 V for 15-60 min at room temperature. The characterization of the physicochemical properties of the obtained ONTs was performed using SEM, XPS, and EDAX methods. ONTs have been shown to be composed mainly of TiO2, Al2O3, and Nb2O5. Single-walled ONTs with the largest specific surface area of 600 cm2 cm-2 can be obtained by anodization at 50 V for 60 min. The mechanism of ONT formation on the Ti-6Al-7Nb alloy was studied in detail. Gentamicin sulfate loaded into ONTs was studied using FTIR, TG, DTA, and DTG methods. Drug release kinetics was determined by UV-Vis spectrophotometry. The obtained ONTs can be proposed for use in modern implantology as carriers for drugs delivered locally in inflammatory conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...