Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 3540, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347049

ABSTRACT

Oblique plane microscopy (OPM) offers 3D optically sectioned imaging with high spatial- and temporal-resolution while enabling conventional sample mounting. The technique uses a concatenation of three microscopes, two for remote focusing and a tilted tertiary microscope, often including an immersion objective, to image an oblique sample plane. This design induces Fresnel reflections and a reduced effective aperture, thus impacting the resolution and light efficiency of the system. Using vectorial diffraction simulations, the system performance was characterized based on illumination angle and polarization, signal to noise ratio, and refractive index of the tertiary objective immersion. We show that for samples with high fluorescent anisotropy, s-polarized light-sheets yield higher average resolution for all system configurations, as well as higher light-efficiency. We also provide a tool for performance characterization of arbitrary light-sheet imaging systems.

2.
Light Sci Appl ; 12(1): 56, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36864022

ABSTRACT

In 1934, Frits Zernike demonstrated that it is possible to exploit the sample's refractive index to obtain superior contrast images of biological cells. The refractive index contrast of a cell surrounded by media yields a change in the phase and intensity of the transmitted light wave. This change can be due to either scattering or absorption caused by the sample. Most cells are transparent at visible wavelengths, which means the imaginary component of their complex refractive index, also known as extinction coefficient k, is close to zero. Here, we explore the use of c-band ultra-violet (UVC) light for high-contrast high-resolution label-free microscopy, as k is naturally substantially higher in the UVC than at visible wavelengths. Using differential phase contrast illumination and associated processing, we achieve a 7- to 300-fold improvement in contrast compared to visible-wavelength and UVA differential interference contrast microscopy or holotomography, and quantify the extinction coefficient distribution within liver sinusoidal endothelial cells. With a resolution down to 215 nm, we are, for the first time in a far-field label-free method, able to image individual fenestrations within their sieve plates which normally requires electron or fluorescence superresolution microscopy. UVC illumination also matches the excitation peak of intrinsically fluorescent proteins and amino acids and thus allows us to utilize autofluorescence as an independent imaging modality on the same setup.

3.
Sci Data ; 9(1): 98, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322035

ABSTRACT

This three-dimensional structured illumination microscopy (3DSIM) dataset was generated to highlight the suitability of 3DSIM to investigate mitochondria-derived vesicles (MDVs) in H9c2 cardiomyoblasts in living or fixed cells. MDVs act as a mitochondria quality control mechanism. The cells were stably expressing the tandem-tag eGFP-mCherry-OMP25-TM (outer mitochondrial membrane) which can be used as a sensor for acidity. A part of the dataset is showing correlative imaging of lysosomes labeled using LysoTracker in fixed and living cells. The cells were cultivated in either normal or glucose-deprived medium containing galactose. The resulting 3DSIM data were of high quality and can be used to undertake a variety of studies. Interestingly, many dynamic tubules derived from mitochondria are visible in the 3DSIM videos under both glucose and galactose-adapted growth conditions. As the raw 3DSIM data, optical parameters, and reconstructed 3DSIM images are provided, the data is especially suitable for use in the development of SIM reconstruction algorithms, bioimage analysis methods, and for biological studies of mitochondria.


Subject(s)
Galactose , Lysosomes , Mitochondria , Myoblasts, Cardiac , Animals , Glucose , Lighting , Microscopy , Myoblasts, Cardiac/ultrastructure , Rats
4.
Microsc Res Tech ; 85(5): 2016-2022, 2022 May.
Article in English | MEDLINE | ID: mdl-35045219

ABSTRACT

The point spread function of a fixed fluorophore with its dipole axis colinear to the optical axis appears donut-shaped when seen through a microscope, and its light distribution in the pupil plane is radially polarized. Yet other techniques, such as photolithography, report that this same light distribution in the pupil plane appears as a solid spot. How can this same distribution lead to a spot in one case but a donut in the other? Here, we show how the tube lens of the system plays a critical role in determining this shape. Using a vectorial treatment of image formation, we simulate the relative contributions of both longitudinal and radial components to the image of a dipole emitter and thus show how the donut (typically reported for z-polarized single molecule fluorescence microscopy) transforms into a solid spot (as commonly reported for photolithography) as the numerical aperture of the tube lens increases. We find that the transition point occurs around 0.7 NA, which is significantly higher than used for most microscopy systems and lower than for common photolithography systems, thus resolving the seeming paradox of dipole shape.


Subject(s)
Algorithms , Lenses , Microscopy/methods
5.
Nanophotonics ; 11(15): 3421-3436, 2022 Aug.
Article in English | MEDLINE | ID: mdl-38144043

ABSTRACT

The article elucidates the physical mechanism behind the generation of superior-contrast and high-resolution label-free images using an optical waveguide. Imaging is realized by employing a high index contrast multi-moded waveguide as a partially coherent light source. The modes provide near-field illumination of unlabeled samples, thereby repositioning the higher spatial frequencies of the sample into the far-field. These modes coherently scatter off the sample with different phases and are engineered to have random spatial distributions within the integration time of the camera. This mitigates the coherent speckle noise and enhances the contrast (2-10) × as opposed to other imaging techniques. Besides, the coherent scattering of the different modes gives rise to fluctuations in intensity. The technique demonstrated here is named chip-based Evanescent Light Scattering (cELS). The concepts introduced through this work are described mathematically and the high-contrast image generation process using a multi-moded waveguide as the light source is explained. The article then explores the feasibility of utilizing fluctuations in the captured images along with fluorescence-based techniques, like intensity-fluctuation algorithms, to mitigate poor-contrast and diffraction-limited resolution in the coherent imaging regime. Furthermore, a straight waveguide is demonstrated to have limited angular diversity between its multiple modes and therefore, for isotropic sample illumination, a multiple-arms waveguide geometry is used. The concepts introduced are validated experimentally via high-contrast label-free imaging of weakly scattering nanosized specimens such as extra-cellular vesicles (EVs), liposomes, nanobeads and biological cells such as fixed and live HeLa cells.

6.
Opt Express ; 29(15): 23368-23380, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34614603

ABSTRACT

Photonic chip-based total internal reflection fluorescence microscopy (c-TIRFM) is an emerging technology enabling a large TIRF excitation area decoupled from the detection objective. Additionally, due to the inherent multimodal nature of wide waveguides, it is a convenient platform for introducing temporal fluctuations in the illumination pattern. The fluorescence fluctuation-based nanoscopy technique multiple signal classification algorithm (MUSICAL) does not assume stochastic independence of the emitter emission and can therefore exploit fluctuations arising from other sources, as such multimodal illumination patterns. In this work, we demonstrate and verify the utilization of fluctuations in the illumination for super-resolution imaging using MUSICAL on actin in salmon keratocytes. The resolution improvement was measured to be 2.2-3.6-fold compared to the corresponding conventional images.


Subject(s)
Animal Scales/cytology , Epidermis/diagnostic imaging , Lighting , Microscopy, Fluorescence/methods , Optical Imaging/methods , Animals , Fluorescence , Microscopy, Fluorescence/instrumentation , Photons , Salmon
7.
Anal Bioanal Chem ; 413(4): 1203-1214, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33277998

ABSTRACT

Immunofluorescence microscopy is routinely used in the diagnosis of and research on renal impairments. However, this highly specific technique is restricted in its maximum resolution to about 250 nm in the lateral and 700 nm in the axial directions and thus not sufficient to investigate the fine subcellular structure of the kidney's glomerular filtration barrier. In contrast, electron microscopy offers high resolution, but this comes at the cost of poor preservation of immunogenic epitopes and antibody penetration alongside a low throughput. Many of these drawbacks were overcome with the advent of super-resolution microscopy methods. So far, four different super-resolution approaches have been used to study the kidney: single-molecule localization microscopy (SMLM), stimulated emission depletion (STED) microscopy, structured illumination microscopy (SIM), and expansion microscopy (ExM), however, using different preservation methods and widely varying labelling strategies. In this work, all four methods were applied and critically compared on kidney slices obtained from samples treated with the most commonly used preservation technique: fixation by formalin and embedding in paraffin (FFPE). Strengths and weaknesses, as well as the practicalities of each method, are discussed to enable users of super-resolution microscopy in renal research make an informed decision on the best choice of technique. The methods discussed enable the efficient investigation of biopsies stored in kidney banks around the world. Graphical abstract.


Subject(s)
Kidney/ultrastructure , Single Molecule Imaging/methods , Animals , Glomerular Filtration Barrier , Humans , Kidney/pathology , Membrane Proteins/analysis , Mice, Inbred C57BL , Microscopy, Fluorescence , Paraffin Embedding , Podocytes/pathology , Podocytes/ultrastructure , Tissue Fixation
8.
Opt Express ; 28(25): 37199-37208, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379558

ABSTRACT

High resolution microscopy is heavily dependent on superb optical elements and superresolution microscopy even more so. Correcting unavoidable optical aberrations during post-processing is an elegant method to reduce the optical system's complexity. A prime method that promises superresolution, aberration correction, and quantitative phase imaging is Fourier ptychography. This microscopy technique combines many images of the sample, recorded at differing illumination angles akin to computed tomography and uses error minimisation between the recorded images with those generated by a forward model. The more precise knowledge of those illumination angles is available for the image formation forward model, the better the result. Therefore, illumination estimation from the raw data is an important step and supports correct phase recovery and aberration correction. Here, we derive how illumination estimation can be cast as an object detection problem that permits the use of a fast convolutional neural network (CNN) for this task. We find that faster-RCNN delivers highly robust results and outperforms classical approaches by far with an up to 3-fold reduction in estimation errors. Intriguingly, we find that conventionally beneficial smoothing and filtering of raw data is counterproductive in this type of application. We present a detailed analysis of the network's performance and provide all our developed software openly.

9.
Placenta ; 97: 42-45, 2020 08.
Article in English | MEDLINE | ID: mdl-32792061

ABSTRACT

Super-resolution fluorescence microscopy is a widely employed technique in cell biology research, yet remains relatively unexplored in the field of histopathology. Here, we describe the sample preparation steps and acquisition parameters necessary to obtain fluorescent multicolor super-resolution structured illumination microscopy (SIM) images of both formalin-fixed paraffin-embedded and cryo-preserved placental tissue sections. We compare super-resolved images of chorionic villi against diffraction-limited deconvolution microscopy and show the significant contrast and resolution enhancement attainable with SIM, demonstrating the applicability of this imaging technique for both clinical diagnosis and biological research.


Subject(s)
Chorionic Villi/ultrastructure , Microscopy, Fluorescence/methods , Placenta/ultrastructure , Female , Humans , Pregnancy
10.
Biomed Opt Express ; 11(5): 2548-2559, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32499942

ABSTRACT

We present an open-source implementation of the fluctuation-based nanoscopy method MUSICAL for ImageJ. This implementation improves the algorithm's computational efficiency and takes advantage of multi-threading to provide orders of magnitude faster reconstructions than the original MATLAB implementation. In addition, the plugin is capable of generating super-resolution videos from large stacks of time-lapse images via an interleaved reconstruction, thus enabling easy-to-use multi-color super-resolution imaging of dynamic systems.

11.
Biomed Opt Express ; 11(4): 2098-2108, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32341869

ABSTRACT

Wide-field fluorescence microscopy, while much faster than confocal microscopy, suffers from a lack of optical sectioning and poor axial resolution. 3D structured illumination microscopy (SIM) has been demonstrated to provide optical sectioning and to double the resolution limit both laterally and axially, but even with this the axial resolution is still worse than the lateral resolution of unmodified wide-field microscopy. Interferometric schemes using two high numerical aperture objectives, such as 4Pi confocal and I5M microscopy, have improved the axial resolution beyond that of the lateral, but at the cost of a significantly more complex optical setup. Here, we theoretically and numerically investigate a simpler dual-objective scheme which we propose can be easily added to an existing 3D-SIM microscope, providing lateral and axial resolutions in excess of 125 nm with conventional fluorophores and without the need for interferometric detection.

12.
J Biophotonics ; 13(6): e201960222, 2020 06.
Article in English | MEDLINE | ID: mdl-32067356

ABSTRACT

Large fields of view (FOVs) in total internal reflection fluorescence microscopy (TIRFM) via waveguides have been shown to be highly beneficial for single molecule localisation microscopy on fixed cells [1,2] and have also been demonstrated for short-term live-imaging of robust cell types [3-5], but not yet for delicate primary neurons nor over extended periods of time. Here, we present a waveguide-based TIRFM set-up for live-cell imaging of demanding samples. Using the developed microscope, referred to as the ChipScope, we demonstrate successful culturing and imaging of fibroblasts, primary rat hippocampal neurons and axons of Xenopus retinal ganglion cells (RGCs). The high contrast and gentle illumination mode provided by TIRFM coupled with the exceptionally large excitation areas and superior illumination homogeneity offered by photonic waveguides have potential for a wide application span in neuroscience applications.


Subject(s)
Neurons , Photons , Animals , Microscopy, Fluorescence , Rats
13.
Cell Rep ; 29(11): 3605-3619.e10, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31825839

ABSTRACT

Ribosome assembly occurs mainly in the nucleolus, yet recent studies have revealed robust enrichment and translation of mRNAs encoding many ribosomal proteins (RPs) in axons, far away from neuronal cell bodies. Here, we report a physical and functional interaction between locally synthesized RPs and ribosomes in the axon. We show that axonal RP translation is regulated through a sequence motif, CUIC, that forms an RNA-loop structure in the region immediately upstream of the initiation codon. Using imaging and subcellular proteomics techniques, we show that RPs synthesized in axons join axonal ribosomes in a nucleolus-independent fashion. Inhibition of axonal CUIC-regulated RP translation decreases local translation activity and reduces axon branching in the developing brain, revealing the physiological relevance of axonal RP synthesis in vivo. These results suggest that axonal translation supplies cytoplasmic RPs to maintain/modify local ribosomal function far from the nucleolus in neurons.


Subject(s)
Axons/metabolism , Neurogenesis , Ribosomal Proteins/genetics , Ribosomes/metabolism , Animals , Axons/ultrastructure , Brain/cytology , Brain/growth & development , Brain/metabolism , Cells, Cultured , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regulatory Sequences, Ribonucleic Acid , Ribosomal Proteins/metabolism , Ribosomes/genetics , Xenopus laevis
14.
Sci Rep ; 9(1): 15693, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666606

ABSTRACT

The three-dimensional imaging of mesoscopic samples with Optical Projection Tomography (OPT) has become a powerful tool for biomedical phenotyping studies. OPT uses visible light to visualize the 3D morphology of large transparent samples. To enable a wider application of OPT, we present OptiJ, a low-cost, fully open-source OPT system capable of imaging large transparent specimens up to 13 mm tall and 8 mm deep with 50 µm resolution. OptiJ is based on off-the-shelf, easy-to-assemble optical components and an ImageJ plugin library for OPT data reconstruction. The software includes novel correction routines for uneven illumination and sample jitter in addition to CPU/GPU accelerated reconstruction for large datasets. We demonstrate the use of OptiJ to image and reconstruct cleared lung lobes from adult mice. We provide a detailed set of instructions to set up and use the OptiJ framework. Our hardware and software design are modular and easy to implement, allowing for further open microscopy developments for imaging large organ samples.

15.
Opt Express ; 27(18): 25280-25292, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510402

ABSTRACT

Labelfree nanoscopy encompasses optical imaging with resolution in the 100 nm range using visible wavelengths. Here, we present a labelfree nanoscopy method that combines coherent imaging techniques with waveguide microscopy to realize a super-condenser featuring maximally inclined coherent darkfield illumination with artificially stretched wave vectors due to large refractive indices of the employed Si3N4 waveguide material. We produce the required coherent plane wave illumination for Fourier ptychography over imaging areas 400 µm2 in size via adiabatically tapered single-mode waveguides and tackle the overlap constraints of the Fourier ptychography phase retrieval algorithm two-fold: firstly, the directionality of the illumination wave vector is changed sequentially via a multiplexed input structure of the waveguide chip layout and secondly, the wave vector modulus is shortend via step-wise increases of the illumination light wavelength over the visible spectrum. We test the method in simulations and in experiments and provide details on the underlying image formation theory as well as the reconstruction algorithm. While the generated Fourier ptychography reconstructions are found to be prone to image artefacts, an alternative coherent imaging method, rotating coherent scattering microscopy (ROCS), is found to be more robust against artefacts but with less achievable resolution.

16.
Sci Rep ; 9(1): 6425, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015487

ABSTRACT

The deconvolution of widefield fluorescence images provides only guesses of spatial frequency information along the optical axis due to the so called missing cone in the optical transfer function. Retaining the single-shot imaging speed of deconvolution microscopy while gaining access to missing cone information is thus highly desirable for microscopy of volumetric samples. Here, we present a concept that superimposes two orthogonally polarized excitation lattices with a phase-shift of p between them. In conjunction with a non-iterative image reconstruction algorithm this permits the restoration of missing cone information. We show how fluorescence anisotropy could be used as a method to encode and decode the patterns simultaneously and develop a rigorous theoretical framework for the method. Through in-silico experiments and imaging of fixed biological cells on a structured illumination microscope that emulates the proposed setup we validate the feasibility of the method.

17.
Sci Rep ; 8(1): 5630, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29618762

ABSTRACT

Super-resolution single-molecule localization microscopy, often referred to as PALM/STORM, works by ensuring that fewer than one fluorophore in a diffraction-limited volume is emitting at any one time, allowing the observer to infer that the emitter is located at the center of the point-spread function. This requires careful control over the incident light intensity in order to control the rate at which fluorophores are switched on; if too many fluorophores are activated, their point-spread functions overlap, which impedes efficient localization. If too few are activated, the imaging time is impractically long. There is therefore considerable recent interest in constructing so-called 'top-hat' illumination profiles that provide a uniform illumination over the whole field of view. We present the use of a single commercially-available low-cost refractive beamshaping element that can be retrofitted to almost any existing microscope; the illumination profile created by this element demonstrates a marked improvement in the power efficiency of dSTORM microscopy, as well as a significant reduction in the propensity for reconstruction artifacts, compared to conventional Gaussian illumination.

18.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677515

ABSTRACT

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Subject(s)
Arginine/chemistry , Molecular Chaperones/chemistry , RNA-Binding Protein FUS/chemistry , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cations , DNA Methylation , Frontotemporal Dementia/metabolism , Frontotemporal Lobar Degeneration/metabolism , Humans , Microscopy, Atomic Force , Microscopy, Fluorescence , Protein Binding , Protein Domains , Protein Processing, Post-Translational , Protein Structure, Secondary , RNA-Binding Protein FUS/metabolism , Tyrosine/chemistry , Xenopus laevis
19.
Nat Commun ; 9(1): 712, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29459792

ABSTRACT

Alpha-synuclein is known to bind to small unilamellar vesicles (SUVs) via its N terminus, which forms an amphipathic alpha-helix upon membrane interaction. Here we show that calcium binds to the C terminus of alpha-synuclein, therewith increasing its lipid-binding capacity. Using CEST-NMR, we reveal that alpha-synuclein interacts with isolated synaptic vesicles with two regions, the N terminus, already known from studies on SUVs, and additionally via its C terminus, which is regulated by the binding of calcium. Indeed, dSTORM on synaptosomes shows that calcium mediates the localization of alpha-synuclein at the pre-synaptic terminal, and an imbalance in calcium or alpha-synuclein can cause synaptic vesicle clustering, as seen ex vivo and in vitro. This study provides a new view on the binding of alpha-synuclein to synaptic vesicles, which might also affect our understanding of synucleinopathies.


Subject(s)
Calcium/metabolism , Synaptic Vesicles/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Animals , Binding Sites , Cell Line , Humans , In Vitro Techniques , Lipid Metabolism , Microscopy, Electron, Transmission , Nuclear Magnetic Resonance, Biomolecular , Presynaptic Terminals/metabolism , Protein Aggregates , Protein Binding , Rats , Rats, Sprague-Dawley , Synaptosomes/metabolism , alpha-Synuclein/ultrastructure
20.
Opt Lett ; 42(13): 2511-2514, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28957272

ABSTRACT

A theoretical framework for widefield structured illumination microscopy (SIM) reconstruction from fewer than the commonly used nine raw frame acquisitions is introduced and applied in silico and in vitro. The proposed scheme avoids the recording of redundant spatial frequency components, which was necessary in previous SIM algorithms. This allows for gentler superresolution imaging at faster speeds. A doubling of frame rates is possible solely via changes in the computational reconstruction procedure. Furthermore, we explore numerically the effect of the sample movement on the reconstruction quality and the number of raw frames recordable. Our results show that there exists a limit above which deconvolution microscopy becomes superior to SIM.

SELECTION OF CITATIONS
SEARCH DETAIL
...