Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731616

ABSTRACT

PNAzymes are a group of artificial enzymes which show promising results in selective and efficient cleavage of RNA targets. In the present study, we introduce a series of metal chelating groups based on N,N-bis(2-picolyl) groups (parent, 6-methyl and 6-amino substituted) as the active sites of novel PNAzymes. An improved synthetic route for the 6-amino analogues is described. The catalytic activity of the chelating groups for cleaving phosphodiesters were assessed with the model substrate 2-hydroxypropyl p-nitrophenyl phosphate (HPNPP), confirming that the zinc complexes have the reactivity order of parent < 2-methyl < 2-amino. The three ligands were conjugated to a PNA oligomer to form three PNAzymes which showed the same order of reactivity and some sensitivity to the size of the RNA bulge designed into the catalyst-substrate complex. This work demonstrates that the kinetic activity observed for the model substrate HPNPP could be translated onto the PNAzymes, but that more reactive Zn complexes are required for such PNAzymes to be viable therapeutic agents.


Subject(s)
Zinc , Zinc/chemistry , Peptide Nucleic Acids/chemistry , Chelating Agents/chemistry , RNA/chemistry , RNA/metabolism , Catalysis , Amines/chemistry , Kinetics , Organophosphates
2.
RSC Adv ; 14(25): 17406-17412, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38813131

ABSTRACT

Two novel bicyclo[6.1.0]nonyne (BCN) linker derivatives, which can be directly incorporated into oligonucleotide sequences during standard automated solid-phase synthesis, are reported. Stabilities of BCN-carbinol and two BCN-oligonucleotides are evaluated under acidic conditions. In addition, derivatized BCN linkers (non-acidic and acid treated) are evaluated for strain-promoted alkyne-azide cycloaddition (SPAAC).

3.
J Am Chem Soc ; 146(10): 6926-6935, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38430200

ABSTRACT

G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.


Subject(s)
DNA , G-Quadruplexes , Humans , Ligands , DNA/chemistry , Oligonucleotides
4.
Nat Commun ; 13(1): 4695, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35970823

ABSTRACT

Recombinant spider silk proteins (spidroins) have multiple potential applications in development of novel biomaterials, but their multimodal and aggregation-prone nature have complicated production and straightforward applications. Here, we report that recombinant miniature spidroins, and importantly also the N-terminal domain (NT) on its own, rapidly form self-supporting and transparent hydrogels at 37 °C. The gelation is caused by NT α-helix to ß-sheet conversion and formation of amyloid-like fibrils, and fusion proteins composed of NT and green fluorescent protein or purine nucleoside phosphorylase form hydrogels with intact functions of the fusion moieties. Our findings demonstrate that recombinant NT and fusion proteins give high expression yields and bestow attractive properties to hydrogels, e.g., transparency, cross-linker free gelation and straightforward immobilization of active proteins at high density.


Subject(s)
Fibroins , Spiders , Animals , Fibroins/chemistry , Hydrogels , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Silk/chemistry , Spiders/metabolism
5.
RSC Adv ; 12(9): 5398-5406, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35425588

ABSTRACT

The development of Zn2+-dependent dimethyl-dppz-PNA conjugates (PNAzymes) as efficient site-specific artificial ribonucleases enables rapid sequence-specific degradation of clinically relevant RNA target sequences, but the significance of the RNA/PNAzyme sequence and structural demands for the identification of novel RNA targets are not fully understood. In the present study, we investigated the influence of sequence variation in the recognition arms of the RNA/PNAzyme complex on the RNA cleavage activity of the artificial enzymes. The base pairs closing the 3-nucleotide bulge region on both sides of the bulge as well as the neighbouring nucleobases were shown to significantly influence the RNA cleavage activity. Elongation of the RNA/PNAzyme complex was shown to be tolerated, although potentially prohibitive for catalytic turnover. The specificity of PNAzyme action was clearly demonstrated by the significantly reduced or absent cleavage activity in complexes containing mismatches. Further investigation into 2- and 4-nucleotide RNA bulges indicated that formation of 3-nucleotide bulges in the target RNA gives the optimal cleavage rates, while some potential off-target cleavage of formed 4-nucleotide bulges of select sequences should be considered.

6.
Nucleic Acid Ther ; 32(3): 221-233, 2022 06.
Article in English | MEDLINE | ID: mdl-35238623

ABSTRACT

2'-O-(N-(Aminoethyl)carbamoyl)methyl (2'-O-AECM)-modified oligonucleotides (ONs) and their mixmers with 2'-O-methyl oligonucleotides (2'-OMe ONs) with phosphodiester linkers as well as with partial and full phosphorothioate (PS) inclusion were synthesized and functionally evaluated as splice-switching oligonucleotides in several different reporter cell lines originating from different tissues. This was enabled by first preparing the AECM-modified A, C, G and U, which required a different strategy for each building block. The AECM modification has previously been shown to provide high resistance to enzymatic degradation, even without PS linkages. It is therefore particularly interesting and unprecedented that the 2'-O-AECM ONs are shown to have efficient splice-switching activity even without inclusion of PS linkages and found to be as effective as 2'-OMe PS ONs. Importantly, the PS linkages can be partially included, without any significant reduction in splice-switching efficacy. This suggests that AECM modification has the potential to be used in balancing the PS content of ONs. Furthermore, conjugation of 2'-O-AECM ONs to an endosomal escape peptide significantly increased splice-switching suggesting that this effect could possibly be due to an increase in uptake of ON to the site of action.


Subject(s)
Oligonucleotides, Antisense , Phosphorothioate Oligonucleotides , Cell Line , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/genetics , Phosphorothioate Oligonucleotides/chemistry , Phosphorothioate Oligonucleotides/genetics
7.
RNA Biol ; 19(1): 313-332, 2022.
Article in English | MEDLINE | ID: mdl-35188077

ABSTRACT

RNA-based therapeutics are emerging as a powerful platform for the treatment of multiple diseases. Currently, the two main categories of nucleic acid therapeutics, antisense oligonucleotides and small interfering RNAs (siRNAs), achieve their therapeutic effect through either gene silencing, splicing modulation or microRNA binding, giving rise to versatile options to target pathogenic gene expression patterns. Moreover, ongoing research seeks to expand the scope of RNA-based drugs to include more complex nucleic acid templates, such as messenger RNA, as exemplified by the first approved mRNA-based vaccine in 2020. The increasing number of approved sequences and ongoing clinical trials has attracted considerable interest in the chemical development of oligonucleotides and nucleic acids as drugs, especially since the FDA approval of the first siRNA drug in 2018. As a result, a variety of innovative approaches is emerging, highlighting the potential of RNA as one of the most prominent therapeutic tools in the drug design and development pipeline. This review seeks to provide a comprehensive summary of current efforts in academia and industry aimed at fully realizing the potential of RNA-based therapeutics. Towards this, we introduce established and emerging RNA-based technologies, with a focus on their potential as biosensors and therapeutics. We then describe their mechanisms of action and their application in different disease contexts, along with the strengths and limitations of each strategy. Since the nucleic acid toolbox is rapidly expanding, we also introduce RNA minimal architectures, RNA/protein cleavers and viral RNA as promising modalities for new therapeutics and discuss future directions for the field.


Subject(s)
Genetic Therapy , RNA/genetics , RNA/therapeutic use , Research , Animals , Biotechnology , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Therapy/trends , Humans , Nanotechnology , Oligonucleotides, Antisense , RNA/chemistry , RNA, Messenger , RNA, Small Interfering , Research/trends
8.
Pharmaceutics ; 14(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35214195

ABSTRACT

The delivery of antisense oligonucleotides (ASOs) to specific cell types via targeted endocytosis is challenging due to the low cell surface expression of target receptors and inefficient escape of ASOs from the endosomal pathway. Conjugating ASOs to glucagon-like peptide 1 (GLP1) leads to efficient target knockdown, specifically in pancreatic ß-cells. It is presumed that ASOs dissociate from GLP1 intracellularly to enable an ASO interaction with its target RNA. It is unknown where or when this happens following GLP1-ASO binding to GLP1R and endocytosis. Here, we use correlative nanoscale secondary ion mass spectroscopy (NanoSIMS) and transmission electron microscopy to explore GLP1-ASO subcellular trafficking in GLP1R overexpressing HEK293 cells. We isotopically label both eGLP1 and ASO, which do not affect the eGLP1-ASO conjugate function. We found that the eGLP1 peptide and ASO are not detected at the same level in the same endosomes, within 30 min of GLP1R-HEK293 cell exposure to eGLP1-ASO. When we utilized different linker chemistry to stabilize the GLP1-ASO conjugate, we observed more ASO located with GLP1 compared to cell incubation with the less stable conjugate. Overall, our work suggests that the ASO separates from GLP1 relatively early in the endocytic pathway, and that linker chemistry might impact the GLP1-ASO function.

9.
Molecules ; 26(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34834019

ABSTRACT

2'-O-(N-(Aminoethyl)carbamoyl)methyl-modified 5-methyluridine (AECM-MeU) and 5-methylcytidine (AECM-MeC) phosphoramidites are reported for the first time and prepared in multigram quantities. The syntheses of AECM-MeU and AECM-MeC nucleosides are designed for larger scales (approx. 20 g up until phosphoramidite preparation steps) using low-cost reagents and minimizing chromatographic purifications. Several steps were screened for best conditions, focusing on the most crucial steps such as N3 and/or 2'-OH alkylations, which were improved for larger scale synthesis using phase transfer catalysis (PTC). Moreover, the need of chromatographic purifications was substantially reduced by employing one-pot synthesis and improved work-up strategies.


Subject(s)
Cytidine/analogs & derivatives , Oligonucleotides/chemistry , Oligonucleotides/chemical synthesis , Organophosphorus Compounds/chemistry , Uridine/analogs & derivatives , Cytidine/chemistry , Uridine/chemistry
10.
Chem Commun (Camb) ; 57(83): 10911-10914, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34590632

ABSTRACT

We present Zn2+-dependent dimethyl-dipyridophenazine PNA conjugates as efficient RNA cleaving artificial enzymes. These PNAzymes display site-specific RNA cleavage with 10 minute half-lives and cleave clinically relevant RNA models.


Subject(s)
Peptide Nucleic Acids/chemistry , Phenazines/chemistry , Pyridines/chemistry , RNA/chemistry , Catalysis , Hydrogen-Ion Concentration , Hydrolysis , Ribonucleases/chemistry , Zinc/chemistry
11.
Nucleic Acid Ther ; 31(5): 375-381, 2021 10.
Article in English | MEDLINE | ID: mdl-33978476

ABSTRACT

Stable isotope labeling (SIL) of active pharmaceutical ingredients (API) is a well-established technique for the accurate quantification of small-molecule drugs. As the scope of active ingredients is expanding into areas of larger molecules, such as oligonucleotides (ONs), the development of new quantification techniques is critical. Herein, we describe the analysis of a 34S-SIL anti-PCSK9 gapmer-type antisense ON. A new method for the quantification of this API in complex biological matrices was developed and applied to mouse, dog, and monkey tissue homogenates, which gave improved accuracy and reproducibility compared with the use of auxiliary ONs as internal standard.


Subject(s)
Oligonucleotides , Proprotein Convertase 9 , Animals , Dogs , Isotope Labeling , Mass Spectrometry , Mice , Oligonucleotides/genetics , Proprotein Convertase 9/genetics , Reproducibility of Results
12.
Chemistry ; 27(31): 8143-8148, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33780067

ABSTRACT

The cleavage of uridine 3'-phosphodiesters bearing alcohols with pKa ranging from 7.14 to 14.5 catalyzed by AuNPs functionalized with 1,4,7-triazacyclononane-Zn(II) complexes has been studied to unravel the source of catalysis by these nanosystems (nanozymes). The results have been compared with those obtained with two Zn(II) dinuclear catalysts for which the mechanism is fairly understood. Binding to the Zn(II) ions by the substrate and the uracil of uridine was observed. The latter leads to inhibition of the process and formation of less productive binding complexes than in the absence of the nucleobase. The nanozyme operates with these substrates mostly via a nucleophilic mechanism with little stabilization of the pentacoordinated phosphorane and moderate assistance in leaving group departure. This is attributed to a decrease of binding strength of the substrate to the catalytic site in reaching the transition state due to an unfavorable binding mode with the uracil. The nanozyme favors substrates with better leaving groups than the less acidic ones.


Subject(s)
Gold , Metal Nanoparticles , Catalysis , Kinetics , Organophosphates , RNA , Zinc
13.
ACS Omega ; 6(1): 579-593, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33458510

ABSTRACT

Oligonucleotide (ON) conjugates are increasingly important tools for various molecular diagnostics, nanotechnological applications, and for the development of nucleic acid-based therapies. Multiple labeling of ONs can further equip ON-conjugates and provide improved or additional tailored properties. Typically, the preparation of ON multiconjugates involves additional synthetic steps and/or manipulations in post-ON assembly. This report describes the simplified methodology allowing for multiple labeling of ONs on a solid support and is compatible with phosphodiester as well as phosphorothioate (PS) ONs. The current approach utilizes two novel alkyne- and amino-functionalized linker phosphoramidites that can be readily synthesized from a common aminodiol intermediate in three steps. The combination of new linkers provides orthogonal functionalities, which allow for multiple attachments of similar or varied moieties. The linkers are incorporated into ONs during automated solid-phase ON synthesis, and the conjugation with functional entities is achieved by either amide bond formation or by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The versatility of the approach is demonstrated by the synthesis of 5'-site ON multiconjugates with small molecules, peptides, and fatty acids as well as in the preparation of an internal peptide-ON conjugate.

14.
Bioorg Chem ; 107: 104516, 2021 02.
Article in English | MEDLINE | ID: mdl-33293057

ABSTRACT

An analog of γ1 laminin (RDIAEIIKDI) decapeptide has been used to augment neuronal survival and regeneration after injuries, during aging and other CNS disorder. As a prime synthetic peptide, KDI, is responsible for the neurite outgrowth of human embryonic neurons. In this study, we have designed, modified a KDI derivative and synthesized by replacing isoleucine (I) with Pro (P) amino acid at C-terminal to enhance its potency towards neurite growth. -Cys-Gly-Cys (-CGC) N2S2 motif was also incorporated in the present design for peptide radiolabeling. The modified peptide showed a better binding with the desired 3T1M receptor for neurite growth. The peptide was synthesized using solid phase peptide synthesis and Fmoc-strategy with more than 80% yield. The receptor binding studies of 99mTc-N2S2-KDP in Neuro2A cell lines showed Kd value in 31 nM range and the complex showed appreciable brain uptake in mice. The results on human SH-SY5Y indicate that the unlabeled N2S2-KDP may perhaps be useful for neurite growth in neurodegenerative disorder.


Subject(s)
Laminin/pharmacology , Neuronal Outgrowth/drug effects , Neurons/drug effects , Radiopharmaceuticals/pharmacology , Animals , Blood Proteins/metabolism , Brain/diagnostic imaging , Cell Line, Tumor , Galectins/metabolism , Humans , Laminin/chemical synthesis , Laminin/metabolism , Laminin/pharmacokinetics , Mice, Nude , Molecular Docking Simulation , Molecular Imaging , Protein Binding , Rabbits , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacokinetics
15.
Curr Protoc Nucleic Acid Chem ; 80(1): e102, 2020 03.
Article in English | MEDLINE | ID: mdl-31884728

ABSTRACT

An efficient method for attachment of a variety of reporter groups to oligonucleotides (ONs) is copper (I) [Cu(I)]-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition ("click reaction"). However, in the case of ONs with phosphorothioate modifications as internucleosidic linkages (PS-ONs), this conjugation method has to be adjusted to be compatible with the sulfur-containing groups. The method described here is adapted for PS-ONs, utilizes solid-supported ONs, and implements the Cu(I) bromide dimethyl sulfide complex (CuBr × Me2 S) as a mediator for the click reaction. The solid-supported ONs can be readily transformed into "clickable ONs" by on-line addition of an alkyne-containing linker that subsequently can react with an azido-containing moiety (e.g., a peptide) in the presence of CuBr × Me2 S. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Conjugation on solid support Support Protocol: Removal of 4,4'-dimethoxytrityl group from amino linker Basic Protocol 2: Removal of protecting groups and cleavage from solid support Basic Protocol 3: HPLC purification.


Subject(s)
Copper/chemistry , Cycloaddition Reaction , Phosphorothioate Oligonucleotides/chemistry , Catalysis , Click Chemistry/methods
16.
Methods Mol Biol ; 2036: 165-171, 2019.
Article in English | MEDLINE | ID: mdl-31410796

ABSTRACT

In vivo bioavailability and delivery of nucleic acids to the site of action is a severe limitation in oligonucleotide (ON) therapeutics. Equipping the ONs with cell penetrating, homing or endosomal escape peptides can enhance specificity and/or uptake efficiencies. We describe here a general procedure for the preparation of peptide-oligonucleotide conjugates (POCs) on solid support utilizing a novel activated alkyne containing linker which enhances the Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition. Conjugation reaction is efficient in millimolar concentration and submicromolar amounts at ambient temperature. The route for POC preparation involves two subsequent conjugation steps: to solid-supported ONs containing a 5'-amino modifier (1) the triple bond donor (p-(N-propynoylamino)toluic acid (PATA), p-([2-(propynyloxy)acetamido]methyl)benzoic acid (PAMBA) or 2-(propynyloxy)acetic acid (PAA)) is first coupled and then (2) an azido-functionalized peptide is attached via a triazole linkage by copper(I) catalyzed Huisgen 1,3-dipolar cycloaddition. The fragment-conjugated POC is released from the solid support by concentrated ammonia. The method gives high conversion of ON to the POC and only involves a single purification step after complete assembly and release from the solid support. The synthesis is flexible and designed to utilize commercially available oligonucleotide and peptide derivatives without the need for specific automated synthesizers.


Subject(s)
Copper/chemistry , Macromolecular Substances/chemistry , Oligonucleotides/chemistry , Peptides/chemistry , Azides/chemistry , Catalysis , Chromatography, High Pressure Liquid , Cycloaddition Reaction , Macromolecular Substances/chemical synthesis , Solid-Phase Synthesis Techniques
17.
Bioconjug Chem ; 30(6): 1622-1628, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31067031

ABSTRACT

Improving oligonucleotide delivery is critical for the further development of oligonucleotide-based therapeutics. Covalent attachment of reporter molecules is one of the most promising approaches toward efficient oligonucleotide-based therapies. An efficient methods for the attachment of a variety of reporter groups is Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition. However, the majority of potential oligonucleotide (ON) therapeutics in clinical trials are carrying phosphorothioate (PS) linkages, and this robust conjugation method is not yet established for these ONs due to a general concern of Cu-S interaction. Here, we developed a method allowing for efficient conjugation of peptides to PS oligonucleotides. The method utilizes solid supported oligonucleotides that can be readily transformed into "clickable ONs" by simple linker conjugation and further reacted with an azido containing moiety (e.g., a peptide) using the CuBr × Me2S complex as a superior catalyst in that reaction. This study opens the way for further development of PS oligonucleotide-conjugates by means of efficient Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition.


Subject(s)
Copper/chemistry , Cycloaddition Reaction/methods , Peptides/chemistry , Phosphorothioate Oligonucleotides/chemistry , Alkynes/chemical synthesis , Alkynes/chemistry , Azides/chemical synthesis , Azides/chemistry , Catalysis , Cycloaddition Reaction/economics , Peptides/chemical synthesis , Phosphorothioate Oligonucleotides/chemical synthesis
18.
Sci Rep ; 9(1): 7114, 2019 05 08.
Article in English | MEDLINE | ID: mdl-31068616

ABSTRACT

Aroylated phenylenediamines (APDs) are novel inducers of innate immunity enhancing cathelicidin gene expression in human bronchial epithelial cell lines. Here we present two newly developed APDs and aimed at defining the response and signaling pathways for these compounds with reference to innate immunity and antimicrobial peptide (AMP) expression. Induction was initially defined with respect to dose and time and compared with the APD Entinostat (MS-275). The induction applies to several innate immunity effectors, indicating that APDs trigger a broad spectrum of antimicrobial responses. The bactericidal effect was shown in an infection model against Pseudomonas aeruginosa by estimating bacteria entering cells. Treatment with a selected APD counteracted Pseudomonas mediated disruption of epithelial integrity. This double action by inducing AMPs and enhancing epithelial integrity for one APD compound is unique and taken as a positive indication for host directed therapy (HDT). The APD effects are mediated through Signal transducer and activator of transcription 3 (STAT3) activation. Utilization of induced innate immunity to fight infections can reduce antibiotic usage, might be effective against multidrug resistant bacteria and is in line with improved stewardship in healthcare.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bronchi/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Phenylenediamines/pharmacology , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/drug effects , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Benzamides/pharmacology , Cell Line , Cell Survival/drug effects , Gene Expression/drug effects , Humans , Immunity, Innate/drug effects , Interleukin-8/genetics , Interleukin-8/metabolism , Pseudomonas Infections/microbiology , Pyridines/pharmacology , STAT3 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Cathelicidins
19.
Molecules ; 24(4)2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30769777

ABSTRACT

Peptide nucleic acid (PNA)-neocuproine conjugates have been shown to efficiently catalyse the cleavage of RNA target sequences in the presence of Cu2+ ions in a site-specific manner. These artificial enzymes are designed to force the formation of a bulge in the RNA target, the sequence of which has been shown to be key to the catalytic activity. Here, we present a further investigation into the action of Cu2+-dependent PNAzymes with respect to the dependence on bulge composition in 3- and 4-nucleotide bulge systems. Cu2+-dependent PNAzymes were shown to have a clear preference for 4-nucleotide bulges, as the cleavage of 3-nucleotide bulge-forming RNA sequences was significantly slower, which is illustrated by a shift in the half-lives from approximately 30 min to 24 h. Nonetheless, the nucleotide preferences at different positions in the bulge displayed similar trends in both systems. Moreover, the cleavage site was probed by introducing critical chemical modifications to one of the cleavage site nucleotides of the fastest cleaved 4-nucleotide RNA bulge. Namely, the exclusion of the exocyclic amine of the central adenine and the replacement of the 2'-hydroxyl nucleophile with 2'-H or 2'-OMe substituents in the RNA severely diminished the rate of RNA cleavage by the Cu2+-dependent PNAzyme, giving insight into the mechanism of cleavage. Moreover, the shorter recognition arm of the RNA/PNAzyme complex was modified by extending the PNAzyme by two additional nucleobases. The new PNAzyme was able to efficiently promote the cleavage of RNA when fully hybridised to a longer RNA target and even outperform the previous fastest PNAzyme. The improvement was demonstrated in cleavage studies with stoichiometric amounts of either PNAzyme present, and the extended PNAzyme was also shown to give turnover with a 10-fold excess of the RNA target.


Subject(s)
DNA Restriction Enzymes/chemistry , Protein Engineering , RNA/chemistry , Ribonucleases/chemistry , Base Sequence , Catalysis , Copper/chemistry , DNA Restriction Enzymes/genetics , Kinetics , Nucleic Acid Conformation , Nucleic Acid Hybridization , Nucleotides/chemistry , Nucleotides/genetics , RNA/genetics , Ribonucleases/genetics
20.
ACS Chem Neurosci ; 10(3): 1462-1477, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30673220

ABSTRACT

A new generation of ligands designed to interact with the α-helix/ß-strand discordant region of the amyloid-ß peptide (Aß) and to counteract its oligomerization is presented. These ligands are designed to interact with and stabilize the Aß central helix (residues 13-26) in an α-helical conformation with increased interaction by combining properties of several first-generation ligands. The new peptide-like ligands aim at extended hydrophobic and polar contacts across the central part of the Aß, that is, "clamping" the target. Molecular dynamics (MD) simulations of the stability of the Aß central helix in the presence of a set of second-generation ligands were performed and revealed further stabilization of the Aß α-helical conformation, with larger number of polar and nonpolar contacts between ligand and Aß, compared to first-generation ligands. The synthesis of selected novel Aß-targeting ligands was performed in solution via an active ester coupling approach or on solid-phase using an Fmoc chemistry protocol. This included incorporation of aliphatic hydrocarbon moieties, a branched triamino acid with an aliphatic hydrocarbon tail, and an amino acid with a 4'- N, N-dimethylamino-1,8-naphthalimido group in the side chain. The ability of the ligands to reduce Aß1-42 neurotoxicity was evaluated by gamma oscillation experiments in hippocampal slice preparations. The "clamping" second-generation ligands were found to be effective antineurotoxicity agents and strongly prevented the degradation of gamma oscillations by physiological concentration of monomeric Aß1-42 at a stoichiometric ratio.


Subject(s)
Amyloid beta-Peptides/toxicity , Drug Delivery Systems/methods , Molecular Dynamics Simulation , Peptide Fragments/administration & dosage , Peptidomimetics/administration & dosage , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Cell Line, Tumor , Female , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Ligands , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Peptide Fragments/toxicity , Peptidomimetics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...