Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(24): eado0215, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875336

ABSTRACT

Precision interferometry with quantum states has emerged as an essential tool for experimentally answering fundamental questions in physics. Optical quantum interferometers are of particular interest because of mature methods for generating and manipulating quantum states of light. Their increased sensitivity promises to enable tests of quantum phenomena, such as entanglement, in regimes where tiny gravitational effects come into play. However, this requires long and decoherence-free processing of quantum entanglement, which, for large interferometric areas, remains unexplored territory. Here, we present a table-top experiment using maximally path-entangled quantum states of light in a large-scale interferometer sensitive enough to measure the rotation rate of Earth. The achieved sensitivity of 5 µrad s-1 constitutes the highest rotation resolution ever reached with optical quantum interferometers. Further improvements to our methodology will enable measurements of general-relativistic effects on entangled photons, allowing the exploration of the interplay between quantum mechanics and general relativity, along with tests for fundamental physics.

2.
Appl Opt ; 63(7): 1822-1827, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437286

ABSTRACT

Single-mode optical fibers exhibit a small but non-negligible birefringence that induces random polarization rotations during light propagation. In classical interferometry these rotations give rise to polarization-induced fading of the interferometric visibility, and in fiber-based polarimetric sensors as well as quantum optics experiments, they scramble the information encoded in the polarization state. Correcting these undesired rotations is consequently an important part of many experiments and applications employing optical fibers. In this Lab Note we review an efficient method for fully compensating fiber polarization rotations for general input states. This method was not originally devised by us, but does, to the best of our knowledge, not appear in the literature, and our interactions with the community have indicated that it is not well known.

3.
Phys Rev Lett ; 131(6): 060803, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37625060

ABSTRACT

The quantum switch is an example of a process with an indefinite causal structure, and has attracted attention for its ability to outperform causally ordered computations within the quantum circuit model. To date, realizations of the quantum switch have made a trade-off between relying on optical interferometers susceptible to minute path length fluctuations and limitations on the range and fidelity of the implementable channels, thereby complicating their design, limiting their performance, and posing an obstacle to extending the quantum switch to multiple parties. In this Letter, we overcome these limitations by demonstrating an intrinsically stable quantum switch utilizing a common-path geometry facilitated by a novel reciprocal and universal SU(2) polarization gadget. We certify our design by successfully performing a channel discrimination task with near unity success probability.

SELECTION OF CITATIONS
SEARCH DETAIL
...