Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Astrophys J ; 879(2): 124, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-32690977

ABSTRACT

We examine the different element abundances exhibited by the closed loop solar corona and the slow speed solar wind. Both are subject to the first ionization potential (FIP) effect, the enhancement in coronal abundance of elements with FIP below 10 eV (e.g., Mg, Si, Fe) with respect to high-FIP elements (e.g., O, Ne, Ar), but with subtle differences. Intermediate elements, S, P, and C, with FIP just above 10 eV, behave as high-FIP elements in closed loops, but are fractionated more like low-FIP elements in the solar wind. On the basis of FIP fractionation by the ponderomotive force in the chromosphere, we discuss fractionation scenarios where this difference might originate. Fractionation low in the chromosphere where hydrogen is neutral enhances the S, P, and C abundances. This arises with nonresonant waves, which are ubiquitous in open field regions, and is also stronger with torsional Alfvén waves, as opposed to shear (i.e., planar) waves. We discuss the bearing these findings have on models of interchange reconnection as the source of the slow speed solar wind. The outflowing solar wind must ultimately be a mixture of the plasma in the originally open and closed fields, and the proportions and degree of mixing should depend on details of the reconnection process. We also describe novel diagnostics in ultraviolet and extreme ultraviolet spectroscopy now available with these new insights, with the prospect of investigating slow speed solar wind origins and the contribution of interchange reconnection by remote sensing.

2.
Philos Trans A Math Phys Eng Sci ; 373(2041)2015 May 13.
Article in English | MEDLINE | ID: mdl-25848083

ABSTRACT

Plasma in the Sun's hot corona expands into the heliosphere as a supersonic and highly magnetized solar wind. This paper provides an overview of our current understanding of how the corona is heated and how the solar wind is accelerated. Recent models of magnetohydrodynamic turbulence have progressed to the point of successfully predicting many observed properties of this complex, multi-scale system. However, it is not clear whether the heating in open-field regions comes mainly from the dissipation of turbulent fluctuations that are launched from the solar surface, or whether the chaotic 'magnetic carpet' in the low corona energizes the system via magnetic reconnection. To help pin down the physics, we also review some key observational results from ultraviolet spectroscopy of the collisionless outer corona.

SELECTION OF CITATIONS
SEARCH DETAIL
...