Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 114(1): 7-20, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37530477

ABSTRACT

Sugarcane (Saccharum hybrid) is an important cash crop grown in tropical and subtropical countries. Ratoon stunting disease (RSD), caused by a xylem-inhabiting bacterium, Leifsonia xyli subsp. xyli (Lxx) is one of the most economically significant diseases globally. RSD results in severe yield losses because its highly contagious nature and lack of visually identifiable symptoms make it harder to devise an effective management strategy. The efficacy of current management practices is hindered by implementation difficulties caused by lack of resources, high cost, and difficulties in monitoring. Rapid detection of the causal pathogen in vegetative planting material is crucial for sugarcane growers to manage this disease. Several microscopic, serological, and molecular-based methods have been developed and used for detecting the RSD pathogen. Although these methods have been used across the sugarcane industry worldwide to diagnose Lxx, some lack reliability or specificity, are expensive and time-consuming to apply, and most of all, are not suitable for on-farm diagnosis. In recent decades, there has been significant progress in the development of integrated isothermal amplification-based microdevices for accurate human and plant pathogen detection. There is a significant opportunity to develop a novel diagnostic method that integrates nanobiosensing with isothermal amplification within a microdevice format for accurate Lxx detection. In this review, we summarize (i) the historical background and current knowledge of sugarcane ratoon stunting disease, including some aspects related to transmission, pathosystem, and management practices; and (ii) the drawbacks of current diagnostic methods and the potential for application of advanced diagnostics to improve disease management.


Subject(s)
Actinomycetales , Saccharum , Humans , Saccharum/microbiology , Reproducibility of Results , Plant Diseases/microbiology , Xylem/microbiology
2.
Micromachines (Basel) ; 14(11)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38004958

ABSTRACT

Molecular diagnostics have become indispensable in healthcare, agriculture, and environmental monitoring. This diagnostic form can offer rapid and precise identification of pathogens and biomarkers. However, traditional laboratory-based molecular testing methods can be expensive and require specialised training, limiting their accessibility in resource-limited settings and on-site applications. To overcome these challenges, this study proposes an innovative approach to reducing costs and complexity in portable colorimetric loop-mediated isothermal amplification (LAMP) devices. The research evaluates different resistive heating systems to create an energy-efficient, cost-effective, and compact device to heat a polydimethylsiloxane (PDMS) block for precise temperature control during LAMP reactions. By combining this novel heating system with an off-the-shelf red-green-blue (RGB) sensor to detect and quantify colour changes, the integrated system can accurately detect Leifsonia xyli subsp. xyli, the bacteria responsible for ratoon stunting disease (RSD) in sugarcane. The experimental validation of this system demonstrates its ability to detect the target pathogen in real time, making it an important development for low cost, portable, and easy-to-use molecular diagnostics in healthcare, agriculture, and environmental monitoring applications.

3.
ACS Meas Sci Au ; 3(3): 143-161, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37360040

ABSTRACT

Around the world, lung cancer has long been the main factor in cancer-related deaths, with small-cell lung cancer (SCLC) being the deadliest form of lung cancer. Cancer cell-derived exosomes and exosomal miRNAs are considered promising biomarkers for diagnosing and prognosis of various diseases, including SCLC. Due to the rapidity of SCLC metastasis, early detection and diagnosis can offer better diagnosis and prognosis and therefore increase the patient's chances of survival. Over the past several years, many methodologies have been developed for analyzing non-SCLC-derived exosomes. However, minimal advances have been made in SCLC-derived exosome analysis methodologies. This Review discusses the epidemiology and prominent biomarkers of SCLC. Followed by a discussion about the effective strategies for isolating and detecting SCLC-derived exosomes and exosomal miRNA, highlighting the critical challenges and limitations of current methodologies. Finally, an overview is provided detailing future perspectives for exosome-based SCLC research.

SELECTION OF CITATIONS
SEARCH DETAIL
...