Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Methods Mol Biol ; 2491: 561-592, 2022.
Article in English | MEDLINE | ID: mdl-35482205

ABSTRACT

Over the last two decades, yeast display methodology has served as a popular tool for discovery, humanization, stability improvement, and affinity maturation of antibodies and antibody fragments, but also for development of diverse non-antibody protein scaffolds towards the ability of antigen recognition. Yeast display is particularly well suited for multiparametric analysis of properties of derivatized proteins, allowing the evolution of most diverse protein structures into antigen binding entities with favorable expression, stability, and folding properties. Here we present the methodological basics of a novel yeast display-based approach for the functionalization of the large extracellular loop of CD81 into a de novo antigen binding unit. CD81 is intrinsically overrepresented on the surface of extracellular vesicles (EVs), naturally occurring nanoparticle units that act as cell-to-cell messengers by delivering their intracellular cargo from the source cell into a recipient cell. This amazing feature makes them of highest biotechnological interest, yet methods for their targeted delivery are still in their infancy. As a novel approach for introducing EV surface modifications enabling specific target cell recognition and internalization, we have prepared yeast display libraries of CD81 large extracellular loop mutants, which are selected towards specific antigen binding and resulting mutants conveniently clicked into the full-length EV surface protein. Resulting EVs display wild-type-like characteristics regarding the expression level and distribution of recombinant proteins and are hence promising therapeutic tools.


Subject(s)
Extracellular Vesicles , Saccharomyces cerevisiae , Antibodies/metabolism , Extracellular Vesicles/metabolism , Membrane Proteins/metabolism , Peptide Library , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
3.
Biochim Biophys Acta Gen Subj ; 1866(7): 130155, 2022 07.
Article in English | MEDLINE | ID: mdl-35469978

ABSTRACT

BACKGROUND: Site-specific coupling of toxin entities to antibodies has become a popular method of synthesis of antibody-drug conjugates (ADCs), as it leads to a homogenous product and allows a free choice of a convenient site for conjugation. METHODS: We introduced a short motif, containing a single cysteine surrounded by aromatic residues, into the N-terminal FG-loop of the CH2 domain of two model antibodies, cetuximab and trastuzumab. The extent of conjugation with toxic payload was examined with hydrophobic interaction chromatography and mass spectrometry and the activity of resulting conjugates was tested on antigen-overexpressing cell lines. RESULTS: Antibody mutants were amenable for rapid coupling with maleimide-based linker endowed toxin payload and the modifications did not impair their reactivity with target cell lines or negatively impact their biophysical properties. Without any previous reduction, up to 50% of the antibody preparation was found to be coupled with two toxins per molecule. After the isolation of this fraction with preparative hydrophobic interaction chromatography, the ADC could elicit a potent cytotoxic effect on the target cell lines. CONCLUSION: By fine-tuning the microenvironment of the reactive cysteine residue, this strategy offers a simplified protocol for production of site-selectively coupled ADCs. GENERAL SIGNIFICANCE: Our unique approach allows the generation of therapeutic ADCs with controlled chemical composition, which facilitates the optimization of their pharmacological activity. This strategy for directional coupling could in the future simplify the construction of ADCs with double payloads ("dual warheads") introduced with orthogonal techniques.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Antineoplastic Agents/pharmacology , Cysteine/chemistry , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Mass Spectrometry , Trastuzumab/pharmacology
4.
Biotechnol J ; 17(5): e2100422, 2022 May.
Article in English | MEDLINE | ID: mdl-35078277

ABSTRACT

The receptor binding domain (RBD) of the SARS-CoV-2 spike (S)-protein is a prime target of virus-neutralizing antibodies present in convalescent sera of COVID-19 patients and thus is considered a key antigen for immunosurveillance studies and vaccine development. Although recombinant expression of RBD has been achieved in several eukaryotic systems, mammalian cells have proven particularly useful. The authors aimed to optimize RBD produced in HEK293-6E cells towards a stable homogeneous preparation and addressed its O-glycosylation as well as the unpaired cysteine residue 538 in the widely used RBD (319-541) sequence. The authors found that an intact O-glycosylation site at T323 is highly relevant for the expression and maintenance of RBD as a monomer. Furthermore, it was shown that deletion or substitution of the unpaired cysteine residue C538 reduces the intrinsic propensity of RBD to form oligomeric aggregates, concomitant with an increased yield of the monomeric form of the protein. Bead-based and enzyme-linked immunosorbent assays utilizing these optimized RBD variants displayed excellent performance with respect to the specific detection of even low levels of SARS-CoV-2 antibodies in convalescent sera. Hence, these RBD variants could be instrumental for the further development of serological SARS-CoV-2 tests and inform the design of RBD-based vaccine candidates.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Cysteine , HEK293 Cells , Humans , Immunization, Passive , Mammals , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
5.
Biochem Biophys Rep ; 26: 100959, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33718630

ABSTRACT

Monoclonal antibodies can acquire the property of engagement of a second antigen via fusion methods or modification of their CDR loops, but also by modification of their constant domains, such as in the mAb2 format where a set of mutated amino acid residues in the CH3 domains enables a high-affinity specific interaction with the second antigen. We tested the possibility of introducing multiple binding sites for the second antigen by replacing the Fab CH1/CL domain pair with a pair of antigen-binding CH3 domains in a model scaffold with trastuzumab variable domains and VEGF-binding CH3 domains. Such bispecific molecules were produced in a "Fab-like" format and in a full-length antibody format. Novel constructs were of expected molecular composition using mass spectrometry. They were expressed at a high level in standard laboratory conditions, purified as monomers with Protein A and gel filtration and were of high thermostability. Their high-affinity binding to both target antigens was retained. Finally, the Her2/VEGF binding domain-exchanged bispecific antibody was able to mediate a potentiated surface Her2-internalization effect on the Her2-overexpressing cell line SK-BR-3 due to improved level of cross-linking with the endogenously secreted cytokine. To conclude, bispecific antibodies with Fabs featuring exchanged antigen-binding CH3 domains offer an alternative solution in positioning and valency of antigen binding sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...