Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Isotopes Environ Health Stud ; 56(5-6): 495-512, 2020.
Article in English | MEDLINE | ID: mdl-32716671

ABSTRACT

The Tubarão aquifer system constitutes a very complex, multilayered aquifer enclosed in the Paraná basin (central-southern part of Brazil). Despite the relatively low productivity of wells, groundwater represents an important source of water for the very populated and industrialized zones of the State of São Paulo. An extensive water sampling campaign was carried out followed by hydrochemical and isotopic (δ 2H, δ 18O, δ 13C and 14C) studies, aiming at a better understanding of the aquifer's geochemical evolution, recharge processes, and its groundwater residence times. Two main hydrochemical facies were recognized and divide the aquifer in two portions. The shallow portion - the active hydrological zone of the aquifer - is characterized by the Ca-HCO3 water type, evolving as a system open to atmospheric CO2. Mean residence times are typically lower than 5000 years. The lower portion is mostly characterized by the stagnant, Na-HCO3 water type, evolving under closed system conditions. Residence times average up to 15,000 years, but can reach 44,000 years, which indicates the exploitation of (possibly non-renewable) fossil waters. This study contributes to the establishment of proper policies regarding the sustainable groundwater exploitation of the Tubarão aquifer system.


Subject(s)
Carbon Radioisotopes/analysis , Deuterium/analysis , Environmental Monitoring/methods , Groundwater/chemistry , Oxygen Isotopes/analysis , Water Resources/supply & distribution , Brazil , Carbon Isotopes/analysis , Hydrology , Water Cycle , Water Pollutants, Chemical/analysis , Water Wells
2.
Environ Sci Pollut Res Int ; 26(23): 24235-24246, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31230237

ABSTRACT

The quaternization of chitosan molecules creates materials with high adsorptive capacity towards textile dyes, which renders them capable of rapidly removing such dyes from a solution. In this study, a novel material was synthesized in bead form to adsorb the Acid Blue 25 textile dye. The adsorption isotherms, kinetics, and thermodynamics of this new material were investigated. The beads were further characterized by FT-IR and SEM studies, as well as their rheological behavior. Bioassays with Daphnia similis analyzed the toxicity of the dye before and after treatments. The Freundlich isotherm model fitted to all the adsorption data in a pH range from 2.50 to 8.50. Kinetic studies showed that adsorption was ruled by an intraparticle diffusion process and reached equilibrium in 270 min, as 39.527 µg mg-1 of dye was sorbed to the beads. Thermodynamic studies showed that adsorption was a spontaneous and endothermic process. Thermodynamics also confirmed that the adsorption was proportionally influenced by higher temperatures. The FT-IR spectroscopy identified the adsorbate/adsorbent binding sites, thus confirming the occurrence of chemisorption. Post-treatment bioassays found a significant decrease in toxicity, obtaining just 10% of D. similis mortality after adsorption treatments. Therefore, the synthesized beads from this research can potentially be applied to the treatment of textile effluents.


Subject(s)
Anthraquinones/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Chitosan/chemistry , Coloring Agents/chemistry , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Textiles , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...