Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 13(5): 1377-1389, 2020 09.
Article in English | MEDLINE | ID: mdl-32180337

ABSTRACT

The transition to sustainable agriculture and horticulture is a societal challenge of global importance. Fertilization with a minimum impact on the environment can facilitate this. Organic fertilizers can play an important role, given their typical release pattern and production through resource recovery. Microbial fertilizers (MFs) constitute an emerging class of organic fertilizers and consist of dried microbial biomass, for instance produced on effluents from the food and beverage industry. In this study, three groups of organisms were tested as MFs: a high-rate consortium aerobic bacteria (CAB), the microalga Arthrospira platensis ('Spirulina') and a purple non-sulfur bacterium (PNSB) Rhodobacter sp. During storage as dry products, the MFs showed light hygroscopic activity, but the mineral and organic fractions remained stable over a storage period of 91 days. For biological tests, a reference organic fertilizer (ROF) was used as positive control, and a commercial organic growing medium (GM) as substrate. The mineralization patterns without and with plants were similar for all MFs and ROF, with more than 70% of the organic nitrogen mineralized in 77 days. In a first fertilization trial with parsley, all MFs showed equal performance compared to ROF, and the plant fresh weight was even higher with CAB fertilization. CAB was subsequently used in a follow-up trial with petunia and resulted in elevated plant height, comparable chlorophyll content and a higher amount of flowers compared to ROF. Finally, a cost estimation for packed GM with supplemented fertilizer indicated that CAB and a blend of CAB/PNSB (85%/15%) were most cost competitive, with an increase of 6% and 7% in cost compared to ROF. In conclusion, as bio-based fertilizers, MFs have the potential to contribute to sustainable plant nutrition, performing as good as a commercially available organic fertilizer, and to a circular economy.


Subject(s)
Fertilizers , Soil , Agriculture , Biomass , Fertilization , Nitrogen/analysis , Spirulina
2.
Bioresour Technol ; 238: 214-222, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28433910

ABSTRACT

Spent sulphite liquor (SSL) was used as carbon source for the production of succinic acid using immobilized cultures of Actinobacillus succinogenes and Basfia succiniciproducens on two different supports, delignified cellulosic material (DCM) and alginate beads. Fed-batch immobilized cultures with A. succinogenes in alginates resulted in higher sugar to succinic acid conversion yield (0.81g/g) than the respective yield achieved (0.65g/g) when DCM immobilized cultures were used. The final succinic acid concentration and yield achieved in fed-batch with immobilized cultures of B. succiniciproducens in alginates (45g/L and 0.66g/g) were higher than A. succinogenes immobilized cultures (35.4g/L and 0.61g/g) using nano-filtrated SSL as fermentation medium. Immobilized cultures of B. succiniciproducens in alginate beads were reused in four sequential fed-batch fermentations of nano-filtrated SSL leading to the production of 64.7g of succinic acid with a yield range of 0.42-0.67g/g and productivity range of 0.29-0.65g/L/h. The immobilized cultures improved the efficiency of succinic acid production as compared to free cell cultures.


Subject(s)
Actinobacillus , Fermentation , Succinic Acid , Bioreactors , Sulfites
3.
J Biotechnol ; 233: 95-105, 2016 Sep 10.
Article in English | MEDLINE | ID: mdl-27374402

ABSTRACT

Ultrafiltration and nanofiltration of spent sulphite liquor (SSL) has been employed to evaluate the simultaneous production of lignosulphonates and bio-based succinic acid using the bacterial strains Actinobacillus succinogenes and Basfia succiniciproducens. Ultrafiltration with membranes of 10, 5 and 3kDa molecular weight cut-off results in significant losses of lignosulphonates (26-50%) in the permeate stream, while nanofiltration using membrane with 500Da molecular weight cut-off results in high retention yields of lignosulphonates (95.6%) in the retentate stream. Fed-batch bioreactor cultures using permeates from ultrafiltrated SSL resulted in similar succinic acid concentration (27.5g/L) and productivity (0.4g/L/h) by both strains. When permeates from nanofiltrated SSL were used, the strain B. succiniciproducens showed the highest succinic acid concentration (33.8g/L), yield (0.58g per g of consumed sugars) and productivity (0.48g/L/h). The nanofiltration of 1t of thick spent sulphite liquor could lead to the production of 306.3kg of lignosulphonates and 52.7kg of succinic acid, whereas the ultrafiltration of 1t of thick spent sulphite liquor using a 3kDa membrane could result in the production of 237kg of lignosulphonates and 71.8kg of succinic acid when B. succiniproducens is used in both cases.


Subject(s)
Bioreactors/microbiology , Industrial Waste/analysis , Lignin/chemistry , Succinic Acid/metabolism , Sulfonic Acids/chemistry , Ultrafiltration/methods , Actinobacillus/metabolism , Lignin/analysis , Nanotechnology , Succinic Acid/analysis , Sulfonic Acids/analysis
4.
Bioresour Technol ; 214: 504-513, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27176670

ABSTRACT

Spent sulphite liquor (SSL) has been used for the production of lignosulphonates (LS), antioxidants and bio-based succinic acid. Solvent extraction of SSL with isopropanol led to the separation of approximately 80% of the total LS content, whereas the fermentations carried out using the pretreated SSL with isopropanol led to the production of around 19g/L of succinic acid by both Actinobacillus succinogenes and Basfia succiniciproducens. Fractionation of SSL via nanofiltration to separate the LS and solvent extraction using ethyl acetate to separate the phenolic compounds produced a detoxified sugar-rich stream that led to the production of 39g/L of succinic acid by B. succiniciproducens. This fractionation scheme resulted also in the production of 32.4g LS and 1.15g phenolic-rich extract per 100g of SSL. Both pretreatment schemes removed significant quantities of metals and heavy metals. This novel biorefinery concept could be integrated in acidic sulphite pulping mills.


Subject(s)
Antioxidants/analysis , Biotechnology/methods , Chemical Fractionation/methods , Lignin/analogs & derivatives , Succinic Acid/analysis , Sulfites/chemistry , Sulfonic Acids/analysis , Waste Disposal, Fluid , 2-Propanol/chemistry , Acetates/chemistry , Actinobacillus/metabolism , Carbohydrates/analysis , Fermentation , Filtration , Lignin/analysis , Nanotechnology , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...