Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Orthop J Sports Med ; 9(3): 2325967121991146, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34250164

ABSTRACT

BACKGROUND: Scapular assessment is important in examining overhead athletes, but there is inconsistency in scapular clinical assessment and its relation to pathology. PURPOSE: To determine the relationship between clinical scapular assessment and biomechanical scapula resting position, shoulder strength, and pitching shoulder kinematics and kinetics. STUDY DESIGN: Descriptive laboratory study. METHODS: Two clinicians performed scapular assessments and graded the scapula as presence or absence of scapular dyskinesis. Shoulder external rotation (ER) and internal rotation (IR) strength were collected. The 3-dimensional biomechanics of the scapula resting position (upward/downward rotation, IR/ER, and anterior/posterior tilt) were assessed while participants stood at rest, and pitching kinematics (maximum shoulder ER, shoulder abduction, shoulder horizontal abduction, shoulder rotation velocity) and kinetics (maximum shoulder distraction force) were assessed when participants pitched off the portable pitching mound that was engineered to meet major league specifications. RESULTS: A total of 33 high school baseball pitchers (age, 16.3 ± 1.2 years; height, 184.0 ± 6.9 cm; weight, 76.8 ± 20.8 kg; hand dominance: left, 9 [27%]; right, 24 [73%]; pitch velocity, 34.7 ± 2.3 m/s) participated in this study. Of them, 15 participants had scapular dyskinesis, and 18 had normal scapulothoracic rhythm. No differences were observed for upward/downward rotation or anterior/posterior tilt, shoulder ER, shoulder abduction, or shoulder distraction force, based on the presence of scapular dyskinesis. Pitchers with scapular dyskinesis demonstrated significantly greater scapular resting IR position (effect size [ES], 0.80; 95% CI, 0.06 to 1.54; P = .020), greater nondominant shoulder ER to IR strength ratio (ES, 0.49; 95% CI, -0.02 to 1.00; P = .018), and decreased shoulder rotation velocity (ES, 14.66; 95% CI: 12.06 to 17.25; P = .016). Pitchers with greater anterior tilt demonstrated greater shoulder rotation velocity (r = -0.48; P = .006). CONCLUSION: Pitchers with scapular dyskinesis had greater scapular IR, greater nondominant shoulder ER to IR strength ratio, and reduced shoulder rotation velocity. CLINICAL RELEVANCE: Scapular assessment may be more influenced by differential IR than upward rotation or anterior tilt. Scapular dyskinesis has no competitive performance advantage among amateur athletes. Greater understanding is needed to decipher the critical threshold between beneficial and maladaptive scapular movement patterns.

2.
Int J Sports Phys Ther ; 15(6): 1119-1128, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33344029

ABSTRACT

BACKGROUND: When pitching a baseball, pelvic and trunk pitching kinematics play an integral role in momentum transfer from the lower extremity to the upper extremity. However, it is unknown how hip and trunk ROM and hip shoulder separation interplay with pelvic and trunk pitching kinematics. HYPOTHESIS/PURPOSE: To determine the relationship between clinical trunk and hip range of motion (ROM) and pitching biomechanical pelvis and trunk kinematics, and kinematic sequencing. STUDY DESIGN: Controlled biomechanical study. METHODS: High school pitchers were assessed for trunk rotation via motion capture and hip ROM via a goniometer prior to pitching. Trunk rotation was designated as dominant and non-dominant sides, and hips as stance and lead limbs. Pitchers threw four fastballs during three dimensional biomechanical assessment. Spearman's Rho correlations were performed between trunk and hip ROM, and trunk and hip biomechanical kinematics, and kinematic pitching sequence. RESULTS: Thirty-two pitchers (mean age: 16.3 ± 1.2 years, height = 184.0 ± 6.9 cm, mass = 76.8 ± 20.8 kg) were included in this study. Their mean pitch velocity was 34.7 ± 2.3 m/s, peak pelvis rotation velocity: 669.1 ± 95.5 deg/s, and peak trunk rotation velocity: 1084.7 ± 93.0 deg/s. There were no differences between dominant and non-dominant side trunk rotation, or between stance and lead hip ROM. There were no significant relationships between trunk or hip ROM and pitching kinematics. There was a significant relationship between hip shoulder separation and peak trunk rotation velocity (r = 0.390, p=0.027). There was a significant relationship between pitch velocity and peak trunk rotation velocity (r = 0.478, p = 0.006). There were no other significant relationships between pitching kinematics or kinematic sequencing. CONCLUSION: Hip shoulder separation is related to trunk rotation velocity, and ultimately pitch velocity. These ROM measurements can be used as normative values for hip shoulder separation in high school pitchers. LEVEL OF EVIDENCE: 3.

SELECTION OF CITATIONS
SEARCH DETAIL
...