Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 33(17): 1401-1409, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31148247

ABSTRACT

RATIONALE: 2-Hydroxyglutarate (2-hg) exists as enantiomers and can readily undergo cyclization to its lactone. Gas chromatography/electron ionization mass spectrometry (GC/EI-MS) has been used to separate 2-hg enantiomers in bodily fluids but the assay cannot simultaneously measure cyclic and acylic 2-hg enantiomers. Furthermore, the assignment of ion structures was not verified by complementary MS data. METHODS: GC/EI-MS and product ion analysis were used to obtain MS and MS/MS spectra of 2-hg, deuterated and 13 C-labeled 2-hg, and 2-hg lactone. Ion structures and EI fragmentation mechanisms were determined by fragmentation pattern and isotopologue comparisons. Using the EI data, a GC/MS/MS assay was developed to separate and detect 2-hg enantiomers and 2-hg lactone enantiomers in blood and urine using a cyclodextrin capillary column. RESULTS: A new ion structure was predicted for the 85 m/z fragment than what was previously hypothesized, and the 117 m/z ion was the only fragment unique to the linear 2-hg compound. MS/MS data suggested that the majority of the fragments were the result of secondary fragmentation. Finally, separation of serum and urine 2-hg and 2-hg lactone enantiomers was achieved, and the acyclic 2-hg compound was found to be the major compound detected, though the amount of lactone detected was considerable in a number of samples. CONCLUSIONS: Unique EI fragmentation pathways for both 2-hg and the 2-hg lactone have been described. Subsequently, the GC/MS/MS assay presented herein has significant potential as a novel clinical assay as it separates and detects both 2-hg enantiomers and the 2-hg lactone enantiomers, a capability which has not been previously demonstrated by any other assay to date.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Glutarates/chemistry , Lactones/chemistry , Molecular Structure , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism , Tandem Mass Spectrometry/methods
2.
J Bacteriol ; 195(12): 2709-17, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23603739

ABSTRACT

Bacterial swarming is a type of motility characterized by a rapid and collective migration of bacteria on surfaces. Most swarming species form densely packed dynamic clusters in the form of whirls and jets, in which hundreds of rod-shaped rigid cells move in circular and straight patterns, respectively. Recent studies have suggested that short-range steric interactions may dominate hydrodynamic interactions and that geometrical factors, such as a cell's aspect ratio, play an important role in bacterial swarming. Typically, the aspect ratio for most swarming species is only up to 5, and a detailed understanding of the role of much larger aspect ratios remains an open challenge. Here we study the dynamics of Paenibacillus dendritiformis C morphotype, a very long, hyperflagellated, straight (rigid), rod-shaped bacterium with an aspect ratio of ~20. We find that instead of swarming in whirls and jets as observed in most species, including the shorter T morphotype of P. dendritiformis, the C morphotype moves in densely packed straight but thin long lines. Within these lines, all bacteria show periodic reversals, with a typical reversal time of 20 s, which is independent of their neighbors, the initial nutrient level, agar rigidity, surfactant addition, humidity level, temperature, nutrient chemotaxis, oxygen level, illumination intensity or gradient, and cell length. The evolutionary advantage of this unique back-and-forth surface translocation remains unclear.


Subject(s)
Locomotion , Paenibacillus/physiology , Culture Media/chemistry , Flagella/physiology , Flagella/ultrastructure , Microscopy, Electron, Transmission , Paenibacillus/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...