Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 37(5): 1466-1475, 2018 05.
Article in English | MEDLINE | ID: mdl-29446488

ABSTRACT

Levels of biomagnifying contaminants are greatest in high-trophic level biota (e.g., predatory birds such as gulls). Gull eggs have been used to assess contaminant spatial patterns and sources, but such assessments must consider how organism trophic position may influence spatial inferences. Stable nitrogen isotopes (δ15 N) in bulk tissue are routinely used in this context. However, bulk δ15 N values are only useful if spatial differences in baseline δ15 N values are considered. Amino acid compound-specific stable nitrogen isotope analysis can generate estimates of baseline δ15 N values and trophic position from the same sample. In the present study, eggs (n = 428) of California (Larus californicus), herring (Larus argentatus smithsonianus), and ring-billed (Larus delawarensis) gulls were used to assess spatial patterns in mercury (Hg) availability in 12 western Canadian lakes located over 14 degrees of latitude, with amino acid compound-specific stable isotope analysis adjustment of egg Hg levels for trophic position. Mean trophic position-adjusted egg Hg levels (micrograms per gram, dry wt) were greatest at sites in receiving waters of the Athabasca River (X¯ = 0.70) compared to southern (X¯ = 0.39) and northern (X¯ = 0.50) regions. Research is required to investigate factors (e.g., local Hg released as a result of human activities, processes influencing Hg methylation) which may be responsible for greater Hg availability in the lower Athabasca River basin. However, it is clear that amino acid compound-specific stable isotope analysis is a valuable tool for assessing contaminant spatial patterns. Environ Toxicol Chem 2018;37:1466-1475. © 2018 SETAC.


Subject(s)
Amino Acids/analysis , Charadriiformes/metabolism , Environmental Monitoring , Geography , Mercury/analysis , Nitrogen Isotopes/analysis , Animals , California , Canada , Food Chain , Lakes , Nitrogen/analysis , Ovum/metabolism , Rivers
2.
Oecologia ; 178(1): 249-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25447635

ABSTRACT

Predicting demographic consequences of climate change for plant communities requires understanding which factors influence seed set, and how climate change may alter those factors. To determine the effects of pollen availability, temperature, and pollinators on seed production in the alpine, we combined pollen-manipulation experiments with measurements of variation in temperature, and abundance and diversity of potential pollinators along a 400-m elevation gradient. We did this for seven dominant species of flowering plants in the Coast Range Mountains, British Columbia, Canada. The number of viable seeds set by plants was influenced by pollen limitation (quantity of pollen received), mate limitation (quality of pollen), temperature, abundance of potential pollinators, seed predation, and combinations of these factors. Early flowering species (n = 3) had higher seed set at high elevation and late-flowering species (n = 4) had higher seed set at low elevation. Degree-days >15 °C were good predictors of seed set, particularly in bee-pollinated species, but had inconsistent effects among species. Seed production in one species, Arnica latifolia, was negatively affected by seed-predators (Tephritidae) at mid elevation, where there were fewer frost-hours during the flowering season. Anemone occidentalis, a fly-pollinated, self-compatible species had high seed set at all elevations, likely due to abundant potential pollinators. Simultaneously measuring multiple factors affecting reproductive success of flowering plants helped identify which factors were most important, providing focus for future studies. Our work suggests that responses of plant communities to climate change may be mediated by flowering time, pollination syndrome, and susceptibility to seed predators.


Subject(s)
Altitude , Flowers/growth & development , Herbivory , Magnoliopsida/physiology , Pollination , Seeds/growth & development , Temperature , Anemone/physiology , Animals , Arnica/physiology , Bees , British Columbia , Canada , Climate Change , Diptera , Ecosystem , Freezing , Plant Diseases , Pollen , Predatory Behavior , Reproduction , Seasons
3.
Trends Ecol Evol ; 27(12): 654; author reply 655, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22917846
SELECTION OF CITATIONS
SEARCH DETAIL
...