Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Mol Ther ; 31(12): 3441-3456, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37814449

ABSTRACT

Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.


Subject(s)
Antibodies, Neutralizing , Capsid , Humans , Mice , Animals , Dependovirus , Intravitreal Injections , Transduction, Genetic , Primates/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Genetic Vectors/genetics
2.
Rehabil Nurs ; 48(1): 14-22, 2023.
Article in English | MEDLINE | ID: mdl-36215177

ABSTRACT

PURPOSE: The aim of this study was to explore the association between the presence and severity of anosognosia for hemiplegia (AHP) and falls in stroke survivors. DESIGN: A prospective, correlational research design was utilized. METHODS: Primary instrumentation included demographic information and the Visual-Analogue Test for Anosognosia for motor impairment (VATA-m). Correlational and regression analyses were performed between a priori variables. RESULTS: There was no statistically significant relationship found between AHP and falls. An incidental finding included that clinicians erroneously charted that their patients were aware of their physical limitations 100% of the time, which indicates that there is discord between clinicians and patients regarding physical limitations. CONCLUSIONS: Though no statistically significant relationship was found between AHP and falls, the incidental finding of dissonance between the patient and the clinician has important clinical implications. RELEVANCE: The relationship between AHP and stroke rehabilitation outcomes is still not understood, and incorporating part of the VATA-m into patient assessment could improve clinician understanding of patient awareness.


Subject(s)
Agnosia , Stroke Rehabilitation , Stroke , Humans , Hemiplegia/complications , Prospective Studies , Stroke/complications , Agnosia/complications
3.
Front Immunol ; 13: 895519, 2022.
Article in English | MEDLINE | ID: mdl-35784369

ABSTRACT

The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement.


Subject(s)
Endothelial Cells , Macular Degeneration , Choroid , Complement System Proteins , Humans , Macular Degeneration/genetics , Retina
4.
Eye Brain ; 14: 17-33, 2022.
Article in English | MEDLINE | ID: mdl-35115857

ABSTRACT

PURPOSE: Transcranial alternating current stimulation (tACS) is used as a brain stimulation mechanism to enhance learning, ameliorate some psychiatric disorders, and modify behavior. This study assessed the effects of near threshold tACS-like currents on Off-center and On-Off retinal ganglion cell responsiveness in the rabbit retina eyecup preparation as a model for central nervous system effects. MATERIALS AND METHODS: We made extracellular recordings in the isolated rabbit eyecup preparation using single electrodes and microelectrode arrays to measure light-evoked spike responses in different classes of Off-center and On-Off retinal ganglion cells before, during, and after brief applications of alternating currents of 1-2 microamperes, at frequencies of 10, 20, 30, and 40 Hz. RESULTS: tACS application sculpted the light-evoked response profiles without directly driving spiking activity of the 20 Off-center and On-Off ganglion cells we recorded from. During tACS application, Off responses were significantly enhanced for 6 cells and significantly suppressed for 14 cells, but after tACS application, Off responses were significantly enhanced for 7 cells and suppressed for 12 cells. The Off responses of the remaining two cells returned to baseline. On responses were less affected during and after tACS. CONCLUSION: tACS sculpts Off-center and On-Off retinal ganglion cell responsiveness. The dissimilarity of effects in different cells within the same class and the differential effects on the On and Off components of the light response within the same cell are consistent with the hypothesis that tACS acts at threshold on amacrine cells in the inner plexiform layer.

5.
Eye Brain ; 14: 1-15, 2022.
Article in English | MEDLINE | ID: mdl-35046742

ABSTRACT

PURPOSE: Transcranial alternating current stimulation (tACS) is a stimulation protocol used for learning enhancement and mitigation of cognitive dysfunction. Correlated firing has been postulated to be a meta-code that links neuronal spike responses associated with a single entity and may be an important component of high-level cognitive functions. Thus, changes in the covariance firing structure of CNS neurons such as retinal ganglion cells are one potential mechanism by which tACS can exert its effects. MATERIALS AND METHODS: We used microelectrode arrays to record light-evoked spike responses of 24 retinal ganglion cells in 7 rabbit eyecup preparations and analyzed the covariance between 30 pairs of neighboring retinal ganglion cells before, during, and after 10-minute application of alternating currents of 1 microampere at 10 or 20 Hz. RESULTS: tACS stimulation significantly changed the covariance structure of correlated firing in 60% of simultaneously recorded retinal ganglion cells. Application of tACS in the retinal preparation increased cross-covariance in 26% of cell pairs, an effect usually associated with increased light-evoked ganglion cell firing. tACS associated decreases in cross-covariance occurred in 37% of cell pairs. Increased covariance was more common in response to the first, 10-minute application of tACS in isolated retina preparation. Changes in covariance were rare after repeated stimulation, and more likely to result in decreased covariance. CONCLUSION: Retinal ganglion cell correlated firing is modulated by 1 microampere tACS currents showing that electrical stimulation can significantly and persistently change the structure of the correlated firing of simultaneously recorded rabbit retinal ganglion cells.

6.
Sci Rep ; 11(1): 15612, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341398

ABSTRACT

Age-related macular degeneration (AMD) is a blinding eye disease with no unifying theme for its etiology. We used single-cell RNA sequencing to analyze the transcriptomes of ~ 93,000 cells from the macula and peripheral retina from two adult human donors and bulk RNA sequencing from fifteen adult human donors with and without AMD. Analysis of our single-cell data identified 267 cell-type-specific genes. Comparison of macula and peripheral retinal regions found no cell-type differences but did identify 50 differentially expressed genes (DEGs) with about 1/3 expressed in cones. Integration of our single-cell data with bulk RNA sequencing data from normal and AMD donors showed compositional changes more pronounced in macula in rods, microglia, endothelium, Müller glia, and astrocytes in the transition from normal to advanced AMD. KEGG pathway analysis of our normal vs. advanced AMD eyes identified enrichment in complement and coagulation pathways, antigen presentation, tissue remodeling, and signaling pathways including PI3K-Akt, NOD-like, Toll-like, and Rap1. These results showcase the use of single-cell RNA sequencing to infer cell-type compositional and cell-type-specific gene expression changes in intact bulk tissue and provide a foundation for investigating molecular mechanisms of retinal disease that lead to new therapeutic targets.


Subject(s)
Macular Degeneration , Phosphatidylinositol 3-Kinases , RNA-Seq , Retina , Gene Expression Profiling , Humans , Sequence Analysis, RNA
7.
Eye Brain ; 13: 175-192, 2021.
Article in English | MEDLINE | ID: mdl-34285622

ABSTRACT

PURPOSE: Electrical stimulation of the human central nervous system via surface electrodes has been used for both learning enhancement and the amelioration of neurodegenerative or psychiatric disorders. However, data are sparse on how such electrical stimulation affects neural circuits at the cellular level. This study assessed the effects of tACS-like currents at 10 Hz on On-center retinal ganglion cell responsiveness, using the rabbit retina eyecup preparation as a model for central nervous system effects. METHODS: We made extracellular recordings of light-evoked spike responses in different classes of On-center retinal ganglion cells before, during and after brief applications of 1 microampere alternating currents using single electrodes and microelectrode arrays. RESULTS: tACS-like currents (tACS) of 1 microampere produced effects on On-center ganglion cell response profiles immediately after initiation or cessation of tACS, without driving phase-locked firing in the absence of light stimuli. tACS affected the initial transient responses to light stimulation for all cells, sustained response components (if any) more strongly for sustained cells, and the center-surround balance more strongly for transient cells. CONCLUSION: tACS sculpted light-evoked responses that lasted for one or more hours after cessation of current without, itself, directly inducing significant firing changes. Functionally, tACS effects could result in effects on contrast thresholds for both broad classes of cells, but because tACs differentially affects the center-surround balance of transient On-center cells, there may be greater effects on the spatial resolution and gain. The isolated retina appears to be a useful model to understand tACS actions at the neuronal level.

8.
Hum Gene Ther ; 30(5): 571-589, 2019 05.
Article in English | MEDLINE | ID: mdl-30358434

ABSTRACT

Mutations in GUCY2D, the gene encoding retinal guanylate cyclase-1 (retGC1), are the leading cause of autosomal dominant cone-rod dystrophy (CORD6). Significant progress toward clinical application of gene replacement therapy for Leber congenital amaurosis (LCA) due to recessive mutations in GUCY2D (LCA1) has been made, but a different approach is needed to treat CORD6 where gain of function mutations cause dysfunction and dystrophy. The CRISPR/Cas9 gene editing system efficiently disrupts genes at desired loci, enabling complete gene knockout or homology directed repair. Here, adeno-associated virus (AAV)-delivered CRISPR/Cas9 was used specifically to edit/disrupt this gene's early coding sequence in mouse and macaque photoreceptors in vivo, thereby knocking out retGC1 expression and demonstrably altering retinal function and structure. Neither preexisting nor induced Cas9-specific T-cell responses resulted in ocular inflammation in macaques, nor did it limit GUCY2D editing. The results show, for the first time, the ability to perform somatic gene editing in primates using AAV-CRISPR/Cas9 and demonstrate the viability this approach for treating inherited retinal diseases in general and CORD6 in particular.


Subject(s)
CRISPR-Cas Systems , Dependovirus/genetics , Gene Editing , Guanylate Cyclase/genetics , Receptors, Cell Surface/genetics , Retina/metabolism , Animals , Base Sequence , Electroretinography , Genes, Reporter , Genetic Vectors/genetics , Guanylate Cyclase/metabolism , Macaca , Mice , Mice, Knockout , Molecular Imaging/methods , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , Receptors, Cell Surface/metabolism , Retina/pathology
9.
Front Neurol ; 9: 1000, 2018.
Article in English | MEDLINE | ID: mdl-30542318

ABSTRACT

Purpose: Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin, and are primarily involved in non-image forming functions, such as the pupillary light reflex and circadian rhythm entrainment. The goal of this study was to develop and validate a targeted ipRGC immunotoxin to ultimately examine the role of ipRGCs in macaque monkeys. Methods: An immunotoxin for the macaque melanopsin gene (OPN4), consisting of a saporin-conjugated antibody directed at the N-terminus, was prepared in solutions of 0.316, 1, 3.16, 10, and 50 µg in vehicle, and delivered intravitreally to the right eye of six rhesus monkeys, respectively. Left eyes were injected with vehicle only. The pupillary light reflex (PLR), the ipRGC-driven post illumination pupil response (PIPR), and electroretinograms (ERGs) were recorded before and after injection. For pupil measurements, 1 and 5 s pulses of light were presented to the dilated right eye while the left pupil was imaged. Stimulation included 651 nm (133 cd/m2), and 4 intensities of 456 nm (16-500 cd/m2) light. Maximum pupil constriction and the 6 s PIPR were calculated. Retinal imaging was performed with optical coherence tomography (OCT), and eyes underwent OPN4 immunohistochemistry to evaluate immunotoxin specificity and ipRGC loss. Results: Before injection, animals showed robust pupil responses to 1 and 5 s blue light. After injection, baseline pupil size increased 12 ± 17%, maximum pupil constriction decreased, and the PIPR, a marker of ipRGC activity, was eliminated in all but the lowest immunotoxin concentration. For the highest concentrations, some inflammation and structural changes were observed with OCT, while eyes injected with lower concentrations appeared normal. ERG responses showed better preserved retinal function with lower concentrations. Immunohistochemistry showed 80-100% ipRGC elimination with the higher doses being more effective; however this could be partly due to inflammation that occurred at the higher concentrations. Conclusion: Findings demonstrated that the OPN4 macaque immunotoxin was specific for ipRGCs, and induced a graded reduction in the PLR, as well as, in ipRGC-driven pupil response with concentration. Further investigation of the effects of ipRGC ablation on ocular and systemic circadian rhythms and the pupil in rhesus monkeys will provide a better understanding of the role of ipRGCs in primates.

10.
Eye Brain ; 10: 65-78, 2018.
Article in English | MEDLINE | ID: mdl-30214335

ABSTRACT

PURPOSE: Transcranial direct current stimulation (tDCS) has been studied in humans for its effects on enhancement of learning, amelioration of psychiatric disorders, and modification of other behaviors for over 50 years. Typical treatments involve injecting 2 mA current through scalp electrodes for 20 minutes, sometimes repeated weekly for two to five sessions. Little is known about the direct effects of tDCS at the neural circuit or the cellular level. This study assessed the effects of tDCS-like currents on the central nervous system by recording effects on retinal ganglion cell responsiveness using the rabbit retina eyecup preparation. MATERIALS AND METHODS: We examined changes in firing to On and Off light stimuli during and after brief applications of a range of currents and polarity and in different classes of ganglion cells. RESULTS: The responses of Sustained cells were consistently suppressed during the first round of current application, but responses could be enhanced after subsequent rounds of stimulation. The observed first round suppression was independent of current polarity, amplitude, or number of trials. However, the light responses of Transient cells were more likely to be enhanced by negative currents and unaffected or suppressed by first round positive currents. Short-duration currents, that is, minutes, as low as 2.5 µA produced a remarkable persistency of firing changes, for up to 1.5 hours, after cessation of current. CONCLUSION: The results are consistent with postulated tDCS alteration of central nervous system function, which outlast the tDCS session and provide evidence for the isolated retina as a useful model to understand tDCS actions at the neuronal level.

11.
Neuroscience ; 354: 43-53, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28450267

ABSTRACT

Alzheimer's disease (AD), a debilitating neurodegenerative illness, is characterized by neuronal cell loss, mental deficits, and abnormalities in several neurotransmitter and protein systems. AD is also associated with visual disturbances, but their causes remain unidentified. We hypothesize that the visual disturbances stem from retinal changes, particularly changes in the retinal cholinergic system, and that the etiology in the retina parallels the etiology in the rest of the brain. To test our hypothesis, quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were employed to assess changes in acetylcholine receptor (AChR) gene expression, number of retinal cells, and astrocytic gliosis in the Transgenic Swedish, Dutch and Iowa (Tg-SwDI) mouse model as compared to age-matched wild-type (WT). We observed that Tg-SwDI mice showed an initial upregulation of AChR gene expression early on (young adults and middle-aged adults), but a downregulation later on (old adults). Furthermore, transgenic animals displayed significant cell loss in the photoreceptor layer and inner retina of the young adult animals, as well as specific cholinergic cell loss, and increased astrocytic gliosis in the middle-aged adult and old adult groups. Our results suggest that the changes observed in AD cerebrum are also present in the retina and may be, at least in part, responsible for the visual deficits associated with the disease.


Subject(s)
Alzheimer Disease/complications , Alzheimer Disease/pathology , Cerebellum/pathology , Gene Expression Regulation/genetics , Retina/pathology , Vision Disorders/etiology , Aging , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Cerebellum/metabolism , Choline O-Acetyltransferase/metabolism , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice , Mice, Transgenic , Mutation , Presenilin-1/genetics , RNA, Messenger/metabolism , Receptors, Cholinergic/metabolism , Retina/metabolism , Visual Pathways/pathology
12.
Front Neurosci ; 10: 551, 2016.
Article in English | MEDLINE | ID: mdl-27990105

ABSTRACT

Purpose: The ability to generate macaque retinas with sortable cell populations would be of great benefit to both basic and translational studies of the primate retina. The purpose of our study was therefore to develop methods to achieve this goal by selectively labeling, in life, photoreceptors (PRs) and retinal ganglion cells (RGCs) with separate fluorescent markers. Methods: Labeling of macaque (Macaca fascicularis) PRs and RGCs was accomplished by subretinal delivery of AAV5-hGRK1-GFP, and retrograde transport of micro-ruby™ from the lateral geniculate nucleus, respectively. Retinas were anatomically separated into different regions. Dissociation conditions were optimized, and cells from each region underwent fluorescent activated cell sorting (FACS). Expression of retinal cell type- specific genes was assessed by quantitative real-time PCR to characterize isolated cell populations. Results: We show that macaque PRs and RGCs can be simultaneously labeled in-life and enriched populations isolated by FACS. Recovery from different retinal regions indicated efficient isolation/enrichment for PRs and RGCs, with the macula being particularly amendable to this technique. Conclusions: The methods and materials presented here allow for the identification of novel reagents designed to target RGCs and/or photoreceptors in a species that is phylogenetically and anatomically similar to human. These techniques will enable screening of intravitreally-delivered AAV capsid libraries for variants with increased tropism for PRs and/or RGCs and the evaluation of vector tropism and/or cellular promoter activity of gene therapy vectors in a clinically relevant species.

13.
J Neurophysiol ; 113(1): 203-17, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25298382

ABSTRACT

The purpose of this study was to evaluate the expression patterns of nicotinic and muscarinic ACh receptors (nAChRs and mAChRs, respectively) in relation to one another and to understand their effects on rabbit retinal ganglion cell response properties. Double-label immunohistochemistry revealed labeled inner-retinal cell bodies and complex patterns of nAChR and mAChR expression in the inner plexiform layer. Specifically, the expression patterns of m1, m4, and m5 muscarinic receptors overlapped with those of non-α7 and α7 nicotinic receptors in presumptive amacrine and ganglion cells. There was no apparent overlap in the expression patterns of m2 muscarinic receptors with α7 nicotinic receptors or of m3 with non-α7 nicotinic receptors. Patch-clamp recordings demonstrated cell type-specific effects of nicotinic and muscarinic receptor blockade. Muscarinic receptor blockade enhanced the center responses of brisk-sustained/G4 On and G4 Off ganglion cells, whereas nicotinic receptor blockade suppressed the center responses of G4 On-cells near the visual streak but enhanced the center responses of nonstreak G4 On-cells. Blockade of muscarinic or nicotinic receptors suppressed the center responses of brisk-sustained Off-cells and the center light responses of subsets of brisk-transient/G11 On- and Off-cells. Only nicotinic blockade affected the center responses of G10 On-cells and G5 Off-cells. These data indicate that physiologically and morphologically identified ganglion cell types have specific patterns of AChR expression. The cholinergic receptor signatures of these cells may have implications for understanding visual defects in disease states that result from decreased ACh availability.


Subject(s)
Receptors, Muscarinic/metabolism , Receptors, Nicotinic/metabolism , Retinal Ganglion Cells/physiology , Animals , Bungarotoxins , Immunohistochemistry , Light , Microscopy, Confocal , Muscarinic Antagonists/pharmacology , Nicotinic Antagonists/pharmacology , Optical Imaging , Patch-Clamp Techniques , Photic Stimulation , Rabbits , Retinal Ganglion Cells/drug effects , Tissue Culture Techniques
14.
Mol Vis ; 20: 1328-56, 2014.
Article in English | MEDLINE | ID: mdl-25352741

ABSTRACT

PURPOSE: The α7 nicotinic acetylcholine receptor (nAChR) is widely expressed in the nervous system, including in the inner retinal neurons in all species studied to date. Although reductions in the expression of α7 nAChRs are thought to contribute to the memory and visual deficits reported in Alzheimer's disease (AD) and schizophrenia , the α7 nAChR knockout (KO) mouse is viable and has only slight visual dysfunction. The absence of a major phenotypic abnormality may be attributable to developmental mechanisms that serve to compensate for α7 nAChR loss. We hypothesized that the upregulation of genes encoding other nAChR subunits or muscarinic acetylcholine receptor (mAChR) subtypes during development partially accounts for the absence of major deficiencies in the α7 nAChR KO mouse. The purpose of this study was to determine whether the deletion of the α7 nAChR subunit in a mouse model resulted in changes in the regulation of other cholinergic receptors or other ion channels in an α7 nAChR KO mouse when compared to a wild-type (WT) mouse. METHODS: To examine gene expression changes, we employed a quantitative real-time polymerase chain reaction (qPCR) using whole retina RNA extracts as well as RNA extracted from selected regions of the retina. These extracts were collected using laser capture microdissection (LCM). The presence of acetylcholine receptor (AChR) subunit and subtype proteins was determined via western blotting. To determine any differences in the number and distribution of choline acetyltransferase (ChAT) amacrine cells, we employed wholemount and vertical immunohistochemistry (IHC) and cell counting. Additionally, in both WT and α7 nAChR KO mouse retinas, the distribution of the nAChR subunit and mAChR subtype proteins were determined via IHC for those KO mice that experienced mRNA changes. RESULTS: In the whole retina, there was a statistically significant upregulation of α2, α9, α10, ß4, nAChR subunit, and m1 and m4 mAChR subtype transcripts in the α7 nAChR KO mice. However, the retinal layers showed complex patterns of transcript expression. In the ganglion cell layer (GCL), m2 and m4 mAChR subtype transcripts were significantly upregulated, while ß3 and ß4 nAChR subunit transcripts were significantly downregulated. In the inner portion of the inner nuclear layer (iINL), α2, α9, ß4, nAChR subunit, and m3 and m4 mAChR subtype transcripts were significantly downregulated. In the outer portion of the inner nuclear layer (oINL), ß2, ß4, and m4 AChR subunit transcripts were significantly upregulated. Western blot experiments confirmed the protein expression of α3-α5 and α9-containing nAChR subunits and m1-m2 mAChR subtypes in mouse retinas. IHC results supported many of the mRNA changes observed. Finally, this is the first report of α9 and α10 nAChR subunit expressions in the retina of any species. CONCLUSIONS: Rather than a simple upregulation of a single AChR subunit or subtype, the absence of the α7 nAChR in the KO mice was associated with complex layer-specific changes in the expression of AChR subunits and subtypes.


Subject(s)
Protein Subunits/genetics , RNA, Messenger/genetics , Receptors, Muscarinic/genetics , Retina/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Animals , Gene Expression Profiling , Gene Expression Regulation , Laser Capture Microdissection , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Annotation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Subunits/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Muscarinic/metabolism , alpha7 Nicotinic Acetylcholine Receptor/deficiency
15.
Invest Ophthalmol Vis Sci ; 51(5): 2778-89, 2010 May.
Article in English | MEDLINE | ID: mdl-20042645

ABSTRACT

PURPOSE: The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. METHODS: RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. RESULTS: RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. CONCLUSIONS: The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases.


Subject(s)
Receptors, Muscarinic/metabolism , Retina/metabolism , Retinal Ganglion Cells/physiology , Animals , Blotting, Western , Electrophysiology , Immunohistochemistry , RNA, Messenger/metabolism , Rabbits , Receptors, Muscarinic/genetics , Reverse Transcriptase Polymerase Chain Reaction
16.
Invest Ophthalmol Vis Sci ; 50(3): 1408-15, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18952912

ABSTRACT

PURPOSE: The purpose of this study was to detect and establish the cellular localizations of nicotinic acetylcholine receptor (nAChR) subunits in Rhesus monkey retina. METHODS: Retinas were dissected from the eyes of monkeys killed after unrelated experiments. RNA was extracted and analyzed by RT-PCR, using primers designed against human sequences of alpha3-alpha7, alpha9, and beta2-beta4 nAChR subunits. The RT-PCR products were separated by gel electrophoresis and sequenced. Frozen sections of postmortem fixed monkey eyes were immunolabeled with well-characterized and specific monoclonal antibodies against the alpha3, alpha4, alpha6, alpha7, beta2, or beta4 nAChR subunits and visualized with fluorescence labeling. RESULTS: Products of the predicted size for the alpha3-alpha7, alpha9, and beta2-beta4 nAChR subunits were detected by RT-PCR in Rhesus monkey retina. Homology between transcripts from monkey retina and human nucleotide sequences ranged from 93 to 99%. Immunohistochemical studies demonstrated that neurons in various cell layers of monkey retina expressed alpha3, alpha4, alpha7, or beta2 nAChR subunits and cells with the morphology of microglia were immunoreactive for the alpha6 or beta4 nAChR subunits. CONCLUSIONS: nAChR subunits are expressed in the monkey retina and localize to diverse retinal neurons as well as putative microglia. Besides mediating visual processing, retinal nAChRs may influence refractive development and ocular pathologies such as neovascularization.


Subject(s)
Receptors, Nicotinic/metabolism , Retina/metabolism , Animals , DNA Primers/chemistry , Electrophoresis, Polyacrylamide Gel , Fluorescent Antibody Technique, Indirect , Macaca mulatta , Microscopy, Fluorescence , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Messenger/metabolism , Receptors, Nicotinic/genetics , Retinal Neurons/metabolism , Reverse Transcriptase Polymerase Chain Reaction
17.
J Comp Neurol ; 507(6): 1952-63, 2008 Apr 20.
Article in English | MEDLINE | ID: mdl-18273886

ABSTRACT

Although acetylcholine is one of the most widely studied neurotransmitters in the retina, many questions remain about its downstream signaling mechanisms. In this study we initially characterized the cholinergic neurotransmitter system in the salamander retina by localizing a variety of cholinergic markers. We then examined the link between both muscarinic and nicotinic receptor activation and nitric oxide production by using immunocytochemistry for cyclic guanosine monophosphate (cGMP) as an indicator. We found a large increase in cGMP-like immunoreactivity (cGMP-LI) in the inner retina in response to muscarinic (but not nicotinic) receptor activation. Based on the amplification of mRNA transcripts, receptor immunocytochemistry, and the use of selective antagonists, we identified these receptors as M2 muscarinic receptors. Using double-labeling techniques, we established that these increases in cGMP-LI were seen in GABAergic but not cholinergic amacrine cells, and that the increases were blocked by inhibitors of nitric oxide production. The creation of nitric oxide in response to cholinergic receptor activation may provide a mechanism for modulating the well-known mutual interactions of acetylcholine-glycine-GABA in the inner retina. As GABA and glycine are the primary inhibitory neurotransmitters in the retina, signaling pathways that modulate their levels or release will have major implications for the processing of complex stimuli by the retina.


Subject(s)
Acetylcholine/metabolism , Ambystoma/metabolism , Neurons/metabolism , Nitric Oxide/metabolism , Receptors, Cholinergic/metabolism , Retina/metabolism , Amacrine Cells/metabolism , Ambystoma/anatomy & histology , Animals , Cyclic GMP/metabolism , Enzyme Inhibitors/pharmacology , Glycine/metabolism , Immunohistochemistry , Neural Inhibition/physiology , Neurons/cytology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Receptors, Cholinergic/genetics , Receptors, Muscarinic/genetics , Receptors, Muscarinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Retina/cytology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology , Synaptic Transmission/physiology , Vision, Ocular/physiology , Visual Pathways/cytology , Visual Pathways/metabolism , gamma-Aminobutyric Acid/metabolism
18.
Mol Vis ; 13: 1878-86, 2007 Oct 04.
Article in English | MEDLINE | ID: mdl-17960126

ABSTRACT

PURPOSE: To better characterize the role of proteoglycans in scleral tissue remodeling during the development of minus lens induced myopia and during recovery in tree shrews. METHODS: Competitive reverse-transcription polymerase chain reaction (RT-PCR) was used to quantify the scleral mRNA levels for aggrecan, decorin, biglycan, and lumican in a group of tree shrews following four days of monocular -5 D lens treatment (n=5) and in a group after two days of recovery after 11 days of -5 D lens wear (n=5). Values were compared with age-matched normal animals (n=5). Aggrecan was localized within the sclera using immunohistochemistry. RESULTS: Four days of -5 D lens wear produced axial (vitreous chamber) elongation and a myopic shift in the treated eyes. Two days of recovery produced significant refractive recovery. Aggrecan mRNA levels showed differential, bidirectional regulation. Levels in the treated eye sclera relative to the control eye were 30.8%+/-2.4% lower after four days of -5 D lens treatment and 51.4%+/-2.4% higher after two days of recovery. Decorin, biglycan, and lumican mRNA levels showed little differential regulation. However, biglycan and lumican along with aggrecan showed binocular regulation (treated and control eye mRNA levels significantly lower than normal eye mRNA levels after 4 days of -5D lens treatment). Immunohistochemical results showed that aggrecan is present in tree shrew sclera and that it is located primarily between the collagen lamella and near the fibroblasts. CONCLUSIONS: These data suggest that the expression of aggrecan is strongly differentially modulated in the sclera during experimentally induced myopia and recovery. The modulation of aggrecan in concert with previously described changes in type I collagen and hyaluronan may play a key functional role in modulating the ability of the lamellae to slip across one another. This may be manifested in the scleral creep rate, which in turn modulates axial elongation rate and refractive state.


Subject(s)
Adaptation, Physiological , Lenses , Myopia/etiology , Myopia/metabolism , Proteoglycans/genetics , RNA, Messenger/metabolism , Sclera/metabolism , Aggrecans/genetics , Aggrecans/metabolism , Animals , Biglycan , Chondroitin Sulfate Proteoglycans/genetics , Decorin , Extracellular Matrix Proteins/genetics , Immunohistochemistry , Keratan Sulfate/genetics , Lumican , Myopia/physiopathology , Recovery of Function , Refraction, Ocular , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Tupaiidae
19.
Vis Neurosci ; 24(4): 523-33, 2007.
Article in English | MEDLINE | ID: mdl-17686198

ABSTRACT

Acetylcholine (ACh) enhances the preferred direction responses of directionally selective ganglion cells (DS GCs; Ariel & Daw, 1982; Ariel & Adolph, 1985) through the activation of nicotinic acetylcholine receptors (nAChRs; Ariel & Daw, 1982; Massey et al., 1997; Kittila & Massey, 1997). DS GCs appear to express at least two types of nAChRs, those that are sensitive to the partially subtype-specific antagonist methyllycaconitine (MLA), and those that are MLA-insensitive (Reed et al., 2002). Our purpose was to confirm the expression of alpha7 nAChRs by DS GCs and to assess the contributions of other nAChR subtypes to DS GC responses. Using choline as a nAChR partially subtype-specific agonist, we found that the majority of DS GCs demonstrated responses to choline while under synaptic blockade. The blockade or reduction of choline-induced responses by bath application of nanomolar (nM) concentrations of MLA provided direct evidence that the choline responses were mediated by alpha7 nAChRs. Because choline is a partial agonist for alpha3beta4 nAChRs (Alkondon et al., 1997), the residual choline responses are consistent with mediation by alpha3beta4 nAChRs. Additionally, a subset of DS GCs responded to nicotine but not to choline, indicating the expression of a third nAChR subtype. The pharmacological results were supported by single cell reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry experiments. The expression of alpha7 and specific non-alpha7 nAChR subtypes was correlated with the preferred direction. This indicates the possibility of differential responses to ACh depending on the direction of movement. This is the first description of differential expression of multiple nAChR subtypes by DS GCs.


Subject(s)
Receptors, Nicotinic/biosynthesis , Retinal Ganglion Cells/metabolism , Animals , Choline/pharmacology , Cobalt/pharmacology , Electrophysiology , Immunohistochemistry , Microelectrodes , Microscopy, Confocal , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Nootropic Agents/pharmacology , Photic Stimulation , Rabbits , Receptors, Nicotinic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
20.
J Histochem Cytochem ; 55(5): 461-76, 2007 May.
Article in English | MEDLINE | ID: mdl-17189521

ABSTRACT

Cholinergic agents affect the light responses of many ganglion cells (GCs) in the mammalian retina by activating nicotinic acetylcholine receptors (nAChRs). Whereas retinal neurons that express beta2 subunit-containing nAChRs have been characterized in the rabbit retina, expression patterns of other nAChR subtypes remain unclear. Therefore, we evaluated the expression of alpha7 nAChRs in retinal neurons by means of single-, double-, and triple-label immunohistochemistry. Our data demonstrate that, in the rabbit retina, several types of bipolar cells, amacrine cells, and cells in the GC layer express alpha7 nAChRs. At least three different populations of cone bipolar cells exhibited alpha7 labeling, whereas glycine-immunoreactive amacrine cells comprised the majority of alpha7-positive amacrine cells. Some GABAergic amacrine cells also displayed alpha7 immunoreactivity; alpha7 labeling was never detected in rod bipolar cells or rod amacrine cells (AII amacrine cells). Our data suggest that activation of alpha7 nAChRs by acetylcholine (ACh) or choline may affect glutamate release from several types of cone bipolar cells, modulating GC responses. ACh-induced excitation of inhibitory amacrine cells might cause either inhibition or disinhibition of other amacrine and GC circuits. Finally, ACh may act on alpha7 nAChRs expressed by GCs themselves.


Subject(s)
Amacrine Cells/metabolism , Receptors, Nicotinic/biosynthesis , Retinal Bipolar Cells/metabolism , Retinal Ganglion Cells/metabolism , Animals , Bungarotoxins/metabolism , Immunohistochemistry , Rabbits , Subcellular Fractions/metabolism , alpha7 Nicotinic Acetylcholine Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...